No-brainer: Morphological Computation driven Adaptive Behavior in Soft Robots
- URL: http://arxiv.org/abs/2407.16613v1
- Date: Tue, 23 Jul 2024 16:20:36 GMT
- Title: No-brainer: Morphological Computation driven Adaptive Behavior in Soft Robots
- Authors: Alican Mertan, Nick Cheney,
- Abstract summary: We show that intelligent behavior can be created without a separate and explicit brain for robot control.
Specifically, we show that adaptive and complex behavior can be created in voxel-based virtual soft robots by using simple reactive materials.
- Score: 0.24554686192257422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is prevalent in contemporary AI and robotics to separately postulate a brain modeled by neural networks and employ it to learn intelligent and adaptive behavior. While this method has worked very well for many types of tasks, it isn't the only type of intelligence that exists in nature. In this work, we study the ways in which intelligent behavior can be created without a separate and explicit brain for robot control, but rather solely as a result of the computation occurring within the physical body of a robot. Specifically, we show that adaptive and complex behavior can be created in voxel-based virtual soft robots by using simple reactive materials that actively change the shape of the robot, and thus its behavior, under different environmental cues. We demonstrate a proof of concept for the idea of closed-loop morphological computation, and show that in our implementation, it enables behavior mimicking logic gates, enabling us to demonstrate how such behaviors may be combined to build up more complex collective behaviors.
Related papers
- Evolution and learning in differentiable robots [0.0]
We use differentiable simulations to rapidly and simultaneously optimize individual neural control of behavior across a large population of candidate body plans.
Non-differentiable changes to the mechanical structure of each robot in the population were applied by a genetic algorithm in an outer loop of search.
One of the highly differentiable morphologies discovered in simulation was realized as a physical robot and shown to retain its optimized behavior.
arXiv Detail & Related papers (2024-05-23T15:45:43Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - From Biological Synapses to Intelligent Robots [0.0]
Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence.
The potential for adaptive learning and control without supervision is brought forward.
The insights collected here point toward the Hebbian model as a choice solution for intelligent robotics and sensor systems.
arXiv Detail & Related papers (2022-02-25T12:39:22Z) - A neural net architecture based on principles of neural plasticity and
development evolves to effectively catch prey in a simulated environment [2.834895018689047]
A profound challenge for A-Life is to construct agents whose behavior is 'life-like' in a deep way.
We propose an architecture and approach to constructing networks driving artificial agents, using processes analogous to the processes that construct and sculpt the brains of animals.
We think this architecture may be useful for controlling small autonomous robots or drones, because it allows for a rapid response to changes in sensor inputs.
arXiv Detail & Related papers (2022-01-28T05:10:56Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
We discuss how neuroscience findings open up opportunities to improve current estimation and control algorithms in robotics.
This paper summarizes some experiments and lessons learned from developing such a computational model on real embodied platforms.
arXiv Detail & Related papers (2021-05-10T10:59:38Z) - Investigation of Warrior Robots Behavior by Using Evolutionary
Algorithms [0.09668407688201358]
This kind of algorithms is inspired by nature that causes robots behaviors get resemble to collective behavior.
For robots which do not have any intelligence, we can define an algorithm and show the results by a simple simulation.
arXiv Detail & Related papers (2020-11-18T18:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.