FakingRecipe: Detecting Fake News on Short Video Platforms from the Perspective of Creative Process
- URL: http://arxiv.org/abs/2407.16670v1
- Date: Tue, 23 Jul 2024 17:39:49 GMT
- Title: FakingRecipe: Detecting Fake News on Short Video Platforms from the Perspective of Creative Process
- Authors: Yuyan Bu, Qiang Sheng, Juan Cao, Peng Qi, Danding Wang, Jintao Li,
- Abstract summary: We introduce a novel perspective that considers how fake news might be created.
Through the lens of the creative process behind news video production, our empirical analysis uncovers the unique characteristics of fake news videos.
Based on the obtained insights, we design FakingRecipe, a creative process-aware model for detecting fake news short videos.
- Score: 19.629705422258905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As short-form video-sharing platforms become a significant channel for news consumption, fake news in short videos has emerged as a serious threat in the online information ecosystem, making developing detection methods for this new scenario an urgent need. Compared with that in text and image formats, fake news on short video platforms contains rich but heterogeneous information in various modalities, posing a challenge to effective feature utilization. Unlike existing works mostly focusing on analyzing what is presented, we introduce a novel perspective that considers how it might be created. Through the lens of the creative process behind news video production, our empirical analysis uncovers the unique characteristics of fake news videos in material selection and editing. Based on the obtained insights, we design FakingRecipe, a creative process-aware model for detecting fake news short videos. It captures the fake news preferences in material selection from sentimental and semantic aspects and considers the traits of material editing from spatial and temporal aspects. To improve evaluation comprehensiveness, we first construct FakeTT, an English dataset for this task, and conduct experiments on both FakeTT and the existing Chinese FakeSV dataset. The results show FakingRecipe's superiority in detecting fake news on short video platforms.
Related papers
- Multi-view autoencoders for Fake News Detection [5.863538874435322]
This paper proposes using multi-view autoencoders to generate a joint feature representation for fake news detection.
Experiments on fake news datasets show a significant improvement in classification performance compared to individual views.
arXiv Detail & Related papers (2025-04-10T19:59:34Z) - Multimodal Fake News Video Explanation: Dataset, Analysis and Evaluation [13.779579002878918]
We develop a new dataset of 2,672 fake news video posts that can definitively explain four real-life fake news video aspects.
In addition, we propose a Multimodal Relation Graph Transformer (MRGT) based on the architecture of multimodal Transformer to benchmark FakeVE.
arXiv Detail & Related papers (2025-01-15T01:52:54Z) - VMID: A Multimodal Fusion LLM Framework for Detecting and Identifying Misinformation of Short Videos [14.551693267228345]
This paper presents a novel fake news detection method based on multimodal information, designed to identify misinformation through a multi-level analysis of video content.
The proposed framework successfully integrates multimodal features within videos, significantly enhancing the accuracy and reliability of fake news detection.
arXiv Detail & Related papers (2024-11-15T08:20:26Z) - FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFake is a multi-domain knowledge-enhanced benchmark for fake news detection.
FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms.
The entire FineFake project is publicly accessible as an open-source repository.
arXiv Detail & Related papers (2024-03-30T14:39:09Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
This paper presents a short-to-long video diffusion model, SEINE, that focuses on generative transition and prediction.
We propose a random-mask video diffusion model to automatically generate transitions based on textual descriptions.
Our model generates transition videos that ensure coherence and visual quality.
arXiv Detail & Related papers (2023-10-31T17:58:17Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
The recent proliferation of hyper-realistic deepfake videos has drawn attention to the threat of audio and visual forgeries.
Most previous work on detecting AI-generated fake videos only utilize visual modality or audio modality.
We propose an Audio-Visual Transformer-based Ensemble Network (AVTENet) framework that considers both acoustic manipulation and visual manipulation.
arXiv Detail & Related papers (2023-10-19T19:01:26Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
This paper presents a comprehensive study on detecting fake news in Brazilian Portuguese.
We propose a machine learning-based approach that leverages natural language processing techniques, including TF-IDF and Word2Vec.
We develop a user-friendly web platform, fakenewsbr.com, to facilitate the verification of news articles' veracity.
arXiv Detail & Related papers (2023-09-20T04:10:03Z) - Multimodal Short Video Rumor Detection System Based on Contrastive
Learning [3.4192832062683842]
Short video platforms in China have gradually evolved into fertile grounds for the proliferation of fake news.
distinguishing short video rumors poses a significant challenge due to the substantial amount of information and shared features.
Our research group proposes a methodology encompassing multimodal feature fusion and the integration of external knowledge.
arXiv Detail & Related papers (2023-04-17T16:07:00Z) - No Place to Hide: Dual Deep Interaction Channel Network for Fake News
Detection based on Data Augmentation [16.40196904371682]
We propose a novel framework for fake news detection from perspectives of semantic, emotion and data enhancement.
A dual deep interaction channel network of semantic and emotion is designed to obtain a more comprehensive and fine-grained news representation.
Experiments show that the proposed approach outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-03-31T13:33:53Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
We present a novel method for detecting fake news by fusing multimodal features derived from textual and visual data.
Experimental results showed that our approach performs better than the current state-of-the-art method on a public Twitter dataset by 3.1% accuracy.
arXiv Detail & Related papers (2021-04-23T08:47:54Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
This research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news.
We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms.
For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining.
arXiv Detail & Related papers (2020-07-24T05:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.