Open quantum systems -- A brief introduction
- URL: http://arxiv.org/abs/2407.16855v1
- Date: Tue, 23 Jul 2024 21:46:57 GMT
- Title: Open quantum systems -- A brief introduction
- Authors: Fabrizio Minganti, Alberto Biella,
- Abstract summary: This text is a short introduction to the physics of driven-dissipative many-body systems.
We will focus on one of the simplest, yet most effective, descriptions of open quantum systems, namely the (Gorini-Kossakowski-Sudarshan-) Lindblad master equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This text is a short introduction to the physics of driven-dissipative many-body systems, focusing on a few selected topics. Beyond its more ``historical'' interest in the study of atomic physics and quantum optics, presently the modeling and studying dissipative phenomena in open quantum systems is pivotal to understanding quantum hardware platforms. While the lack of a thermodynamic potential for these out-of-equilibrium open systems makes it theoretically challenging to investigate their physics, at the same time it allows going beyond the thermodynamic paradigms and investigating new and exotic phenomena. We will focus on one of the simplest, yet most effective, descriptions of open quantum systems, namely the (Gorini-Kossakowski-Sudarshan-) Lindblad master equation. This phenomenological approach describes quantum systems that weakly interact with their surrounding environment. Although many of the results derived below will apply to any quantum system, we will focus in particular on bosonic/spin systems.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Thermodynamics of quantum trajectories on a quantum computer [0.0]
Open-system dynamics are simulated on a quantum computer by coupling a system of interest to ancilla.
We show how to control the dynamics of the open system in order to enhance the probability of quantum trajectories with desired properties.
arXiv Detail & Related papers (2023-01-17T19:00:03Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Learning Quantum Systems [0.0]
Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing.
One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size.
This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control.
arXiv Detail & Related papers (2022-07-01T09:47:26Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Mesoscopic Quantum Thermo-mechanics: a new frontier of experimental
physics [0.0]
Experimentalists have demonstrated their ability to control mechanical modes within mesoscopic objects down to the quantum level.
It is now possible to create mechanical Fock states, to entangle mechanical modes from distinct objects, store quantum information or transfer it from one quantum bit to another.
All of this is in particular referred to as a new engineering resource for quantum technologies.
arXiv Detail & Related papers (2022-04-20T13:35:13Z) - Optomechanics for quantum technologies [0.0]
We review progress in quantum state preparation and entanglement of mechanical systems.
This includes applications to signal processing and transduction, quantum sensing, topological physics, as well as small-scale thermodynamics.
arXiv Detail & Related papers (2021-11-29T17:12:59Z) - Learning quantum dynamics with latent neural ODEs [0.0]
We present the QNODE, a latent neural ODE trained on dynamics from closed and open quantum systems.
The QNODE rediscovers quantum mechanical laws in a totally data-driven way, without constraints or guidance.
arXiv Detail & Related papers (2021-10-20T18:41:04Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.