Free to play: UN Trade and Development's experience with developing its own open-source Retrieval Augmented Generation Large Language Model application
- URL: http://arxiv.org/abs/2407.16896v1
- Date: Tue, 18 Jun 2024 14:23:54 GMT
- Title: Free to play: UN Trade and Development's experience with developing its own open-source Retrieval Augmented Generation Large Language Model application
- Authors: Daniel Hopp,
- Abstract summary: UNCTAD has explored and developed its own open-source Retrieval Augmented Generation (RAG) LLM application.
RAG makes Large Language Models aware of and more useful for the organization's domain and work.
Three libraries developed to produce the app, nlp_pipeline for document processing and statistical analysis, local_rag_llm for running a local RAG LLM, and streamlit_rag for the user interface, are publicly available on PyPI and GitHub with Dockerfiles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative artificial intelligence (AI), and in particular Large Language Models (LLMs), have exploded in popularity and attention since the release to the public of ChatGPT's Generative Pre-trained Transformer (GPT)-3.5 model in November of 2022. Due to the power of these general purpose models and their ability to communicate in natural language, they can be useful in a range of domains, including the work of official statistics and international organizations. However, with such a novel and seemingly complex technology, it can feel as if generative AI is something that happens to an organization, something that can be talked about but not understood, that can be commented on but not contributed to. Additionally, the costs of adoption and operation of proprietary solutions can be both uncertain and high, a barrier for often cost-constrained international organizations. In the face of these challenges, United Nations Trade and Development (UNCTAD), through its Global Crisis Response Group (GCRG), has explored and developed its own open-source Retrieval Augmented Generation (RAG) LLM application. RAG makes LLMs aware of and more useful for the organization's domain and work. Developing in-house solutions comes with pros and cons, with pros including cost, flexibility, and fostering institutional knowledge. Cons include time and skill investments and gaps and application polish and power. The three libraries developed to produce the app, nlp_pipeline for document processing and statistical analysis, local_rag_llm for running a local RAG LLM, and streamlit_rag for the user interface, are publicly available on PyPI and GitHub with Dockerfiles. A fourth library, local_llm_finetune, is also available for fine-tuning existing LLMs which can then be used in the application.
Related papers
- LLMs: A Game-Changer for Software Engineers? [0.0]
Large Language Models (LLMs) like GPT-3 and GPT-4 have emerged as groundbreaking innovations with capabilities that extend far beyond traditional AI applications.
Their potential to revolutionize software development has captivated the software engineering (SE) community.
This paper argues that LLMs are not just reshaping how software is developed but are redefining the role of developers.
arXiv Detail & Related papers (2024-11-01T17:14:37Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
This paper presents a simplified approach to integrating large language models (LLMs) into programming.
Our approach utilizes the semantic richness in existing programs to automatically translate between the traditional programming languages and the natural language.
We present a fully functional and production-grade implementation for our approach and compare it to SOTA LLM software development tools.
arXiv Detail & Related papers (2024-05-14T21:12:01Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - LEGENT: Open Platform for Embodied Agents [60.71847900126832]
We introduce LEGENT, an open, scalable platform for developing embodied agents using Large Language Models (LLMs) and Large Multimodal Models (LMMs)
LEGENT offers a rich, interactive 3D environment with communicable and actionable agents, paired with a user-friendly interface.
In experiments, an embryonic vision-language-action model trained on LEGENT-generated data surpasses GPT-4V in embodied tasks.
arXiv Detail & Related papers (2024-04-28T16:50:12Z) - T-RAG: Lessons from the LLM Trenches [7.545277950323593]
Application area is question answering over private enterprise documents.
Retrieval-Augmented Generation is most prominent framework for building LLM-based applications.
System, which we call Tree-RAG (T-RAG), uses a tree structure to represent entity hierarchies.
arXiv Detail & Related papers (2024-02-12T08:45:08Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNa is an open-source software development assistant.
It generates high-quality instruction-based data for the domain of software engineering.
It employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA.
arXiv Detail & Related papers (2023-08-25T14:56:21Z) - h2oGPT: Democratizing Large Language Models [1.8043055303852882]
We introduce h2oGPT, a suite of open-source code repositories for the creation and use of Large Language Models.
The goal of this project is to create the world's best truly open-source alternative to closed-source approaches.
arXiv Detail & Related papers (2023-06-13T22:19:53Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.