Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning
- URL: http://arxiv.org/abs/2407.16920v1
- Date: Wed, 24 Jul 2024 01:04:34 GMT
- Title: Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning
- Authors: Yeongbin Seo, Dongha Lee, Jinyoung Yeo,
- Abstract summary: The Train-Attention-Augmented Language Model (TAALM) enhances learning efficiency by dynamically predicting and applying weights to tokens based on their usefulness.
We show that TAALM proves the state-of-the-art performance upon the baselines, and also shows synergistic compatibility when integrated with previous CKL approaches.
- Score: 15.475427498268393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous studies on continual knowledge learning (CKL) in large language models (LLMs) have predominantly focused on approaches such as regularization, architectural modifications, and rehearsal techniques to mitigate catastrophic forgetting. However, these methods naively inherit the inefficiencies of standard training procedures, indiscriminately applying uniform weight across all tokens, which can lead to unnecessary parameter updates and increased forgetting. To address these shortcomings, we propose a novel CKL approach termed Train-Attention-Augmented Language Model (TAALM), which enhances learning efficiency by dynamically predicting and applying weights to tokens based on their usefulness. This method employs a meta-learning framework that optimizes token importance predictions, facilitating targeted knowledge updates and minimizing forgetting. Also, we observe that existing benchmarks do not clearly exhibit the trade-off between learning and retaining, therefore we propose a new benchmark, \textsc{LAMA-ckl}, to address this issue. Through experiments conducted on both newly introduced and established CKL benchmarks, TAALM proves the state-of-the-art performance upon the baselines, and also shows synergistic compatibility when integrated with previous CKL approaches.
Related papers
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormer is a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network.
Our experiments reveal that CompoFormer outperforms conventional continual learning (CL) methods, particularly in longer task sequences.
arXiv Detail & Related papers (2024-11-18T08:20:21Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Learning to Learn without Forgetting using Attention [5.6739565497512405]
Continual learning (CL) refers to the ability to continually learn over time by accommodating new knowledge while retaining previously learned experience.
Current machine learning methods are highly prone to overwrite previously learned patterns and thus forget past experience.
Since hand-crafting effective update mechanisms is difficult, we propose meta-learning a transformer-based to enhance CL.
arXiv Detail & Related papers (2024-08-06T14:25:23Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Information Guided Regularization for Fine-tuning Language Models [11.831883526217942]
We argue that a more surgical approach to regularization needs to exist for smoother transfer learning.
We devise a novel approach to dropout for improved model regularization and better downstream generalization.
arXiv Detail & Related papers (2024-06-20T05:18:37Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - Knowledge Editing for Large Language Models: A Survey [51.01368551235289]
One major drawback of large language models (LLMs) is their substantial computational cost for pre-training.
Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge.
arXiv Detail & Related papers (2023-10-24T22:18:13Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.