CovScore: Evaluation of Multi-Document Abstractive Title Set Generation
- URL: http://arxiv.org/abs/2407.17390v1
- Date: Wed, 24 Jul 2024 16:14:15 GMT
- Title: CovScore: Evaluation of Multi-Document Abstractive Title Set Generation
- Authors: Itamar Trainin, Omri Abend,
- Abstract summary: CovScore is an automatic reference-less methodology for evaluating thematic title sets.
We propose a novel methodology that decomposes quality into five main metrics along different aspects of evaluation.
- Score: 16.516381474175986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces CovScore, an automatic reference-less methodology for evaluating thematic title sets, extracted from a corpus of documents. While such extraction methods are widely used, evaluating their effectiveness remains an open question. Moreover, some existing practices heavily rely on slow and laborious human annotation procedures. Inspired by recently introduced LLM-based judge methods, we propose a novel methodology that decomposes quality into five main metrics along different aspects of evaluation. This framing simplifies and expedites the manual evaluation process and enables automatic and independent LLM-based evaluation. As a test case, we apply our approach to a corpus of Holocaust survivor testimonies, motivated both by its relevance to title set extraction and by the moral significance of this pursuit. We validate the methodology by experimenting with naturalistic and synthetic title set generation systems and compare their performance with the methodology.
Related papers
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Optimizing the role of human evaluation in LLM-based spoken document summarization systems [0.0]
We propose an evaluation paradigm for spoken document summarization explicitly tailored for generative AI content.
We provide detailed evaluation criteria and best practices guidelines to ensure robustness in the experimental design, replicability, and trustworthiness of human evaluations.
arXiv Detail & Related papers (2024-10-23T18:37:14Z) - CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1 is the first open-source textbfall-in-one judge LLM.
CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility.
textbfJudgerBench is a new benchmark that encompasses various subjective evaluation tasks.
arXiv Detail & Related papers (2024-10-21T17:56:51Z) - A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
This paper proposes a novel method based on large language models (LLMs) for evaluating text summarization.
Our results show that LLMs evaluation aligns closely with human evaluation, while widely-used automatic metrics such as ROUGE-2, BERTScore, and SummaC do not and also lack consistency.
arXiv Detail & Related papers (2024-06-30T16:12:37Z) - How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs? [3.1706553206969925]
We perform a meta-evaluation of such methods and assess their reliability across a broad range of tasks.
We observe that while automatic evaluation methods can approximate human ratings under specific conditions, their validity is highly context-dependent.
Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
arXiv Detail & Related papers (2024-02-16T15:48:33Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models.
arXiv Detail & Related papers (2023-03-21T14:24:58Z) - Document Provenance and Authentication through Authorship Classification [5.2545206693029884]
We propose an ensemble-based text-processing framework for the classification of single and multi-authored documents.
The proposed framework incorporates several state-of-the-art text classification algorithms.
The framework is evaluated on a large-scale benchmark dataset.
arXiv Detail & Related papers (2023-03-02T12:26:03Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
We experimentally compare several such methods by using them to produce summaries of calls, and evaluating these summaries objectively.
We found that TopicSum and Lead-N outperform the other summarisation methods, whilst BERTSum received comparatively lower scores in both subjective and objective evaluations.
arXiv Detail & Related papers (2022-09-06T13:16:02Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We also propose a post-processing smoothing step that significantly improves the performance of some attribution methods.
arXiv Detail & Related papers (2022-05-20T20:50:17Z) - Automating Document Classification with Distant Supervision to Increase
the Efficiency of Systematic Reviews [18.33687903724145]
Well-done systematic reviews are expensive, time-demanding, and labor-intensive.
We propose an automatic document classification approach to significantly reduce the effort in reviewing documents.
arXiv Detail & Related papers (2020-12-09T22:45:40Z) - PONE: A Novel Automatic Evaluation Metric for Open-Domain Generative
Dialogue Systems [48.99561874529323]
There are three kinds of automatic methods to evaluate the open-domain generative dialogue systems.
Due to the lack of systematic comparison, it is not clear which kind of metrics are more effective.
We propose a novel and feasible learning-based metric that can significantly improve the correlation with human judgments.
arXiv Detail & Related papers (2020-04-06T04:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.