Numerical evaluation of orientation averages and its application to molecular physics
- URL: http://arxiv.org/abs/2407.17434v2
- Date: Mon, 21 Oct 2024 18:18:06 GMT
- Title: Numerical evaluation of orientation averages and its application to molecular physics
- Authors: Alexander Blech, Raoul M. M. Ebeling, Marec Heger, Christiane P. Koch, Daniel M. Reich,
- Abstract summary: In molecular physics, it is often necessary to average over the orientation of molecules when calculating observables.
We derive guidelines for choosing the best quadrature method for orientation averages.
We also present a Python package providing a flexible interface to a variety of quadrature methods.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In molecular physics, it is often necessary to average over the orientation of molecules when calculating observables, in particular when modelling experiments in the liquid or gas phase. Evaluated in terms of Euler angles, this is closely related to integration over two- or three-dimensional unit spheres, a common problem discussed in numerical analysis. The computational cost of the integration depends significantly on the quadrature method, making the selection of an appropriate method crucial for the feasibility of simulations. After reviewing several classes of spherical quadrature methods in terms of their efficiency and error distribution, we derive guidelines for choosing the best quadrature method for orientation averages and illustrate these with three examples from chiral molecule physics. While Gauss quadratures allow for achieving numerically exact integration for a wide range of applications, other methods offer advantages in specific circumstances. Our guidelines can also by applied to higher-dimensional spherical domains and other geometries. We also present a Python package providing a flexible interface to a variety of quadrature methods.
Related papers
- Computing distances and means on manifolds with a metric-constrained Eikonal approach [4.266376725904727]
We introduce the metric-constrained Eikonal solver to obtain continuous, differentiable representations of distance functions.
The differentiable nature of these representations allows for the direct computation of globally length-minimising paths on the manifold.
arXiv Detail & Related papers (2024-04-12T18:26:32Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Approximation Theory, Computing, and Deep Learning on the Wasserstein Space [0.5735035463793009]
We address the challenge of approximating functions in infinite-dimensional spaces from finite samples.
Our focus is on the Wasserstein distance function, which serves as a relevant example.
We adopt three machine learning-based approaches to define functional approximants.
arXiv Detail & Related papers (2023-10-30T13:59:47Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
We present a recipe for constructing gauge equivariant kernels, which induce vector-valued Gaussian processes coherent with geometry.
We extend standard Gaussian process training methods, such as variational inference, to this setting.
arXiv Detail & Related papers (2021-10-27T13:31:10Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z) - Comparative Study of State-of-the-Art Matrix-Product-State Methods for
Lattice Models with Large Local Hilbert Spaces [0.06524460254566902]
matrix-product states (MPS) provide a flexible and generic ansatz class.
We describe and compare three state-of-the-art MPS methods each of which exploits a different approach to tackle the computational complexity.
We analyze the properties of these methods for the example of the Holstein model, performing high-precision calculations as well as a finite-size-scaling analysis of relevant ground-state obervables.
arXiv Detail & Related papers (2020-11-14T23:24:46Z) - Adaptive quadrature schemes for Bayesian inference via active learning [0.0]
We propose novel adaptive quadrature schemes based on an active learning procedure.
We consider an interpolative approach for building a surrogate density, combining it with Monte Carlo sampling methods and other quadrature rules.
Numerical results show the advantage of the proposed approach, including a challenging inference problem in an astronomic model.
arXiv Detail & Related papers (2020-05-31T15:02:32Z) - Fast approximations in the homogeneous Ising model for use in scene
analysis [61.0951285821105]
We provide accurate approximations that make it possible to numerically calculate quantities needed in inference.
We show that our approximation formulae are scalable and unfazed by the size of the Markov Random Field.
The practical import of our approximation formulae is illustrated in performing Bayesian inference in a functional Magnetic Resonance Imaging activation detection experiment, and also in likelihood ratio testing for anisotropy in the spatial patterns of yearly increases in pistachio tree yields.
arXiv Detail & Related papers (2017-12-06T14:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.