Full Qubit Control in the NV$^-$ Ground State for Low Field or High Frequency Sensing
- URL: http://arxiv.org/abs/2407.17461v1
- Date: Wed, 24 Jul 2024 17:58:16 GMT
- Title: Full Qubit Control in the NV$^-$ Ground State for Low Field or High Frequency Sensing
- Authors: Alberto López-García, Javier Cerrillo,
- Abstract summary: We present a scheme for the implementation of fast arbitrary qubit gates in the ground state of the negatively charged nitrogen-vacancy defect in diamond.
The protocol is especially useful in the low-field regime and for high-frequency sensing applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a scheme for the implementation of fast arbitrary qubit gates in the ground state of the negatively charged nitrogen-vacancy (NV$^-$) defect in diamond. The protocol is especially useful in the low-field regime and for high-frequency sensing applications. It constitutes an extension to the NV-ERC technique, which has demonstrated efficient initialization and readout of the double quantum transition with no leakage to any third level thanks to an effective Raman coupling. Here we derive a full theoretical framework of the scheme, identifying the complete unitary associated to the approach, and more specifically the relevant basis change for each of two characteristic pulse durations. Based on this insight, we propose a scheme to perform fast qubit transformations in the double quantum transition. We study its robustness with respect to pulse-timing errors resulting from faulty identification of system parameters or phase-control limitations. We finally demonstrate that the technique can also be implemented in the presence of unknown electric or strain fields.
Related papers
- Quantum geometric protocols for fast high-fidelity adiabatic state transfer [0.0]
We develop a framework for optimal control based on the quantum metric tensor.
This framework allows for fast and high-fidelity adiabatic pulses, even for a dense energy spectrum.
We show that for the geometric protocol, the transfer fidelites are lower bounded $F>99%$ for ultrafast 20 ns pulses.
arXiv Detail & Related papers (2024-09-04T21:14:32Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Fast high-fidelity composite gates in superconducting qubits: Beating
the Fourier leakage limit [0.0]
We present a method for quantum control in superconducting qubits, which overcomes the Fourier limit for the gate duration imposed by leakage to upper states.
We use our approach to produce complete and partial population transfer between the qubit states, as well as the three basic single-qubit quantum gates.
arXiv Detail & Related papers (2022-05-09T10:10:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Rapid and Unconditional Parametric Reset Protocol for Tunable
Superconducting Qubits [12.429990467686526]
We report a fast and high-fidelity reset scheme for qubits in quantum computing.
By modulating the flux through a transmon qubit, we realize a swap between the qubit and its readout resonator.
Our approach can achieve effective second excited state depletion, (ii) has negligible effects on neighbouring qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon.
arXiv Detail & Related papers (2021-03-21T06:22:59Z) - State leakage during fast decay and control of a superconducting
transmon qubit [0.0]
We study the dynamics and control of a superconducting transmon using the numerically exact Liouville-von Neumann equation approach.
We find significant short-time state leakage due to the strong coupling to the bath.
arXiv Detail & Related papers (2020-11-20T15:13:50Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.