Model Collapse in the Self-Consuming Chain of Diffusion Finetuning: A Novel Perspective from Quantitative Trait Modeling
- URL: http://arxiv.org/abs/2407.17493v2
- Date: Thu, 24 Oct 2024 20:03:46 GMT
- Title: Model Collapse in the Self-Consuming Chain of Diffusion Finetuning: A Novel Perspective from Quantitative Trait Modeling
- Authors: Youngseok Yoon, Dainong Hu, Iain Weissburg, Yao Qin, Haewon Jeong,
- Abstract summary: generative models have reached a unique threshold where their outputs are indistinguishable from real data.
Severe degradation in performance has been observed when iterative loops of training and generation occur.
We propose Reusable Diffusion Finetuning (ReDiFine), a simple yet effective strategy inspired by genetic mutations.
- Score: 10.159932782892865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of generative models has reached a unique threshold where their outputs are indistinguishable from real data, leading to the inevitable contamination of future data collection pipelines with synthetic data. While their potential to generate infinite samples initially offers promise for reducing data collection costs and addressing challenges in data-scarce fields, the severe degradation in performance has been observed when iterative loops of training and generation occur -- known as ``model collapse.'' This paper explores a practical scenario in which a pretrained text-to-image diffusion model is finetuned using synthetic images generated from a previous iteration, a process we refer to as the ``Chain of Diffusion.'' We first demonstrate the significant degradation in image quality caused by this iterative process and identify the key factor driving this decline through rigorous empirical investigations. Drawing an analogy between the Chain of Diffusion and biological evolution, we then introduce a novel theoretical analysis based on quantitative trait modeling. Our theoretical analysis aligns with empirical observations of the generated images in the Chain of Diffusion. Finally, we propose Reusable Diffusion Finetuning (ReDiFine), a simple yet effective strategy inspired by genetic mutations. ReDiFine mitigates model collapse without requiring any hyperparameter tuning, making it a plug-and-play solution for reusable image generation.
Related papers
- Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
In this work we formulate the removal of quantization error as a denoising task, using diffusion to recover lost information in the transmitted image latent.
Our approach allows us to perform less than 10% of the full diffusion generative process and requires no architectural changes to the diffusion model.
arXiv Detail & Related papers (2024-04-12T16:23:42Z) - Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
Control [54.132297393662654]
Diffusion models excel at capturing complex data distributions, such as those of natural images and proteins.
While diffusion models are trained to represent the distribution in the training dataset, we often are more concerned with other properties, such as the aesthetic quality of the generated images.
We present theoretical and empirical evidence that demonstrates our framework is capable of efficiently generating diverse samples with high genuine rewards.
arXiv Detail & Related papers (2024-02-23T08:54:42Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
We propose a novel post-training quantization method (Progressive and Relaxing) for text-to-image diffusion models.
We are the first to achieve quantization for Stable Diffusion XL while maintaining the performance.
arXiv Detail & Related papers (2023-11-10T09:10:09Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.