Entangling power, gate typicality and Measurement-induced Phase Transitions
- URL: http://arxiv.org/abs/2407.17776v1
- Date: Thu, 25 Jul 2024 05:10:04 GMT
- Title: Entangling power, gate typicality and Measurement-induced Phase Transitions
- Authors: Sourav Manna, Vaibhav Madhok, Arul Lakshminarayan,
- Abstract summary: We study the behavior of measurement-induced phase transition (MIPT) in hybrid quantum circuits with both unitary gates and measurements.
We show that the entangling power and gate typicality of the two-qubit local unitaries employed in the circuit can be used to explain the behavior of global bipartite entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When subject to a non-local unitary evolution, qubits in a quantum circuit become increasingly entangled. Conversely, measurements applied to individual qubits lead to their disentanglement from the collective system. The extent of entanglement reduction depends on the frequency of local projective measurements. A delicate balance emerges between unitary evolution, which enhances entanglement, and measurements which diminish it. In the thermodynamic limit, there is a phase transition from volume law entanglement to area law entanglement at a critical value of measurement frequency. This phenomenon, occurring in hybrid quantum circuits with both unitary gates and measurements, is termed as measurement-induced phase transition (MIPT). We study the behavior of MIPT in circuits comprising of two qubit unitary gates parameterized by Cartan decomposition. We show that the entangling power and gate typicality of the two-qubit local unitaries employed in the circuit can be used to explain the behavior of global bipartite entanglement the circuit can sustain. When the two qubit gate throughout the circuit is the identity and measurements are the sole driver of the entanglement behavior, we obtain analytical estimate for the entanglement entropy that shows remarkable agreement with numerical simulations. We also find that the entangling power and gate typicality enable the classification of the two-qubit unitaries by different universality classes of phase transitions that can occur in the hybrid circuit. For all unitaries in a particular universality class, the transition from volume to area law of entanglement occurs with same exponent that characterizes the phase transition.
Related papers
- Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Entanglement Steering in Adaptive Circuits with Feedback [6.5014847595384495]
We introduce a class of adaptive random circuit models with feedback that exhibit transitions in both settings.
We demonstrate that the former transition belongs to the parity-conserving universality class by an explicit mapping to a classical branching-annihilating random walk process.
arXiv Detail & Related papers (2022-11-09T19:21:12Z) - Measurement-Induced Power-Law Negativity in an Open Monitored Quantum
Circuit [0.0]
We show that measurements can stabilize quantum entanglement within open quantum systems.
Specifically, in random unitary circuits with dephasing at the boundary, we find both numerically and analytically that projective measurements performed at a small nonvanishing rate results in a steady state.
arXiv Detail & Related papers (2022-02-25T19:00:05Z) - Measurement-induced criticality in extended and long-range unitary
circuits [0.0]
We find the range of interactions plays a key role in characterizing both phases and their measurement-induced transitions.
For the cluster unitary gates we find a transition between a phase with volume-law scaling of the entanglement entropy and a phase with area-law entanglement entropy.
In the case of power-law distributed gates, we find the universality class of the phase transition changes continuously with the parameter controlling the range of interactions.
arXiv Detail & Related papers (2021-10-27T12:55:07Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Measurement Protected Quantum Phases [0.0]
We introduce a class of hybrid quantum circuits, with random unitaries and projective measurements.
Our primary example is circuits with unitaries respecting a global Ising symmetry and two competing types of measurements.
We analyze generalizations of such hybrid circuits to higher dimensions, which allow for coexistence of order and volume law entanglement.
arXiv Detail & Related papers (2020-04-20T18:00:00Z) - Measurement-induced topological entanglement transitions in symmetric
random quantum circuits [0.0]
We study a class of (1+1)D symmetric random quantum circuits with two competing types of measurements.
The circuit exhibits a rich phase diagram involving robust symmetry-protected topological (SPT), trivial, and volume law entangled phases.
arXiv Detail & Related papers (2020-04-15T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.