IsUMap: Manifold Learning and Data Visualization leveraging Vietoris-Rips filtrations
- URL: http://arxiv.org/abs/2407.17835v1
- Date: Thu, 25 Jul 2024 07:46:30 GMT
- Title: IsUMap: Manifold Learning and Data Visualization leveraging Vietoris-Rips filtrations
- Authors: Lukas Silvester Barth, Fatemeh, Fahimi, Parvaneh Joharinad, Jürgen Jost, Janis Keck,
- Abstract summary: We present a systematic and detailed construction of a metric representation for locally distorted metric spaces.
Our approach addresses limitations in existing methods by accommodating non-uniform data distributions and intricate local geometries.
- Score: 0.08796261172196743
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work introduces IsUMap, a novel manifold learning technique that enhances data representation by integrating aspects of UMAP and Isomap with Vietoris-Rips filtrations. We present a systematic and detailed construction of a metric representation for locally distorted metric spaces that captures complex data structures more accurately than the previous schemes. Our approach addresses limitations in existing methods by accommodating non-uniform data distributions and intricate local geometries. We validate its performance through extensive experiments on examples of various geometric objects and benchmark real-world datasets, demonstrating significant improvements in representation quality.
Related papers
- (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
We propose a principled approach for aligning and jointly embedding a pair of datasets with theoretical guarantees.
Our approach leverages the leading singular vectors of the EOT plan matrix between two datasets to extract their shared underlying structure.
We show that in a high-dimensional regime, the EOT plan recovers the shared manifold structure by approximating a kernel function evaluated at the locations of the latent variables.
arXiv Detail & Related papers (2024-07-01T18:48:55Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces.
We propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning.
The model can be scaled to generate high-resolution data while unifying multiple modalities.
arXiv Detail & Related papers (2023-05-24T03:32:03Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Study of Manifold Geometry using Multiscale Non-Negative Kernel Graphs [32.40622753355266]
We propose a framework to study the geometric structure of the data.
We make use of our recently introduced non-negative kernel (NNK) regression graphs to estimate the point density, intrinsic dimension, and the linearity of the data manifold (curvature)
arXiv Detail & Related papers (2022-10-31T17:01:17Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Joint Geometric and Topological Analysis of Hierarchical Datasets [7.098759778181621]
In this paper, we focus on high-dimensional data that are organized into several hierarchical datasets.
The main novelty in this work lies in the combination of two powerful data-analytic approaches: topological data analysis and geometric manifold learning.
We show that our new method gives rise to superior classification results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-04-03T13:02:00Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
hierarchy follows from approximation spaces identified at successively finer scales.
For promoting model generalization at each scale, we also introduce a novel, projection based penalty operator across multiple dimension.
Results show the performance of the approach as a data reduction and modeling strategy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-06-09T18:32:24Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.