Move and Act: Enhanced Object Manipulation and Background Integrity for Image Editing
- URL: http://arxiv.org/abs/2407.17847v1
- Date: Thu, 25 Jul 2024 08:00:49 GMT
- Title: Move and Act: Enhanced Object Manipulation and Background Integrity for Image Editing
- Authors: Pengfei Jiang, Mingbao Lin, Fei Chao, Rongrong Ji,
- Abstract summary: We propose a tuning-free method with only two branches: inversion and editing.
This approach allows users to simultaneously edit the object's action and control the generation position of the edited object.
Impressive image editing results and quantitative evaluation demonstrate the effectiveness of our method.
- Score: 63.32399428320422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods commonly utilize three-branch structures of inversion, reconstruction, and editing, to tackle consistent image editing task. However, these methods lack control over the generation position of the edited object and have issues with background preservation. To overcome these limitations, we propose a tuning-free method with only two branches: inversion and editing. This approach allows users to simultaneously edit the object's action and control the generation position of the edited object. Additionally, it achieves improved background preservation. Specifically, we transfer the edited object information to the target area and repair or preserve the background of other areas during the inversion process at a specific time step. In the editing stage, we use the image features in self-attention to query the key and value of the corresponding time step in the inversion to achieve consistent image editing. Impressive image editing results and quantitative evaluation demonstrate the effectiveness of our method. The code is available at https://github.com/mobiushy/move-act.
Related papers
- GenVideo: One-shot Target-image and Shape Aware Video Editing using T2I Diffusion Models [2.362412515574206]
We propose "GenVideo" for editing videos leveraging target-image aware T2I models.
Our approach handles edits with target objects of varying shapes and sizes while maintaining the temporal consistency of the edit.
arXiv Detail & Related papers (2024-04-18T23:25:27Z) - InstructBrush: Learning Attention-based Instruction Optimization for Image Editing [54.07526261513434]
InstructBrush is an inversion method for instruction-based image editing methods.
It extracts editing effects from image pairs as editing instructions, which are further applied for image editing.
Our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.
arXiv Detail & Related papers (2024-03-27T15:03:38Z) - FlexEdit: Flexible and Controllable Diffusion-based Object-centric Image Editing [3.852667054327356]
We introduce FlexEdit, a flexible and controllable editing framework for objects.
We iteratively adjust latents at each denoising step using our FlexEdit block.
Our framework employs an adaptive mask, automatically extracted during denoising, to protect the background.
arXiv Detail & Related papers (2024-03-27T14:24:30Z) - LoMOE: Localized Multi-Object Editing via Multi-Diffusion [8.90467024388923]
We introduce a novel framework for zero-shot localized multi-object editing through a multi-diffusion process.
Our approach leverages foreground masks and corresponding simple text prompts that exert localized influences on the target regions.
A combination of cross-attention and background losses within the latent space ensures that the characteristics of the object being edited are preserved.
arXiv Detail & Related papers (2024-03-01T10:46:47Z) - Edit One for All: Interactive Batch Image Editing [44.50631647670942]
This paper presents a novel method for interactive batch image editing using StyleGAN as the medium.
Given an edit specified by users in an example image (e.g., make the face frontal), our method can automatically transfer that edit to other test images.
Experiments demonstrate that edits performed using our method have similar visual quality to existing single-image-editing methods.
arXiv Detail & Related papers (2024-01-18T18:58:44Z) - MagicStick: Controllable Video Editing via Control Handle Transformations [49.29608051543133]
MagicStick is a controllable video editing method that edits the video properties by utilizing the transformation on the extracted internal control signals.
We present experiments on numerous examples within our unified framework.
We also compare with shape-aware text-based editing and handcrafted motion video generation, demonstrating our superior temporal consistency and editing capability than previous works.
arXiv Detail & Related papers (2023-12-05T17:58:06Z) - MotionEditor: Editing Video Motion via Content-Aware Diffusion [96.825431998349]
MotionEditor is a diffusion model for video motion editing.
It incorporates a novel content-aware motion adapter into ControlNet to capture temporal motion correspondence.
arXiv Detail & Related papers (2023-11-30T18:59:33Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - LayerDiffusion: Layered Controlled Image Editing with Diffusion Models [5.58892860792971]
LayerDiffusion is a semantic-based layered controlled image editing method.
We leverage a large-scale text-to-image model and employ a layered controlled optimization strategy.
Experimental results demonstrate the effectiveness of our method in generating highly coherent images.
arXiv Detail & Related papers (2023-05-30T01:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.