Amortized Active Learning for Nonparametric Functions
- URL: http://arxiv.org/abs/2407.17992v2
- Date: Tue, 10 Sep 2024 21:51:23 GMT
- Title: Amortized Active Learning for Nonparametric Functions
- Authors: Cen-You Li, Marc Toussaint, Barbara Rakitsch, Christoph Zimmer,
- Abstract summary: Active learning (AL) is a sequential learning scheme aiming to select the most informative data.
We propose an amortized AL method, where new data are suggested by a neural network which is trained up-front without any real data.
- Score: 23.406516455945653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning (AL) is a sequential learning scheme aiming to select the most informative data. AL reduces data consumption and avoids the cost of labeling large amounts of data. However, AL trains the model and solves an acquisition optimization for each selection. It becomes expensive when the model training or acquisition optimization is challenging. In this paper, we focus on active nonparametric function learning, where the gold standard Gaussian process (GP) approaches suffer from cubic time complexity. We propose an amortized AL method, where new data are suggested by a neural network which is trained up-front without any real data (Figure 1). Our method avoids repeated model training and requires no acquisition optimization during the AL deployment. We (i) utilize GPs as function priors to construct an AL simulator, (ii) train an AL policy that can zero-shot generalize from simulation to real learning problems of nonparametric functions and (iii) achieve real-time data selection and comparable learning performances to time-consuming baseline methods.
Related papers
- Data Selection for ERMs [67.57726352698933]
We study how well can $mathcalA$ perform when trained on at most $nll N$ data points selected from a population of $N$ points.
Our results include optimal data-selection bounds for mean estimation, linear classification, and linear regression.
arXiv Detail & Related papers (2025-04-20T11:26:01Z) - Amortized Safe Active Learning for Real-Time Decision-Making: Pretrained Neural Policies from Simulated Nonparametric Functions [23.406516455945653]
Active Learning (AL) is a sequential learning approach aiming at selecting the most informative data for model training.
Key challenges of AL are the repeated model training and acquisition optimization required for data selection.
By leveraging a pretrained neural network policy, our method eliminates the need for repeated model training and acquisition optimization.
arXiv Detail & Related papers (2025-01-26T09:05:52Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Not Everything is All You Need: Toward Low-Redundant Optimization for Large Language Model Alignment [126.34547428473968]
Large language models (LLMs) are still struggling in aligning with human preference in complex tasks and scenarios.
We propose a low-redundant alignment method named textbfALLO, focusing on optimizing the most related neurons with the most useful supervised signals.
Experimental results on 10 datasets have shown the effectiveness of ALLO.
arXiv Detail & Related papers (2024-06-18T13:34:40Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Learning-Rate-Free Learning by D-Adaptation [18.853820404058983]
D-Adaptation is an approach to automatically setting the learning rate which achieves the optimal rate of convergence for convex Lipschitz functions.
We present extensive experiments for SGD and Adam variants of our method, where the method automatically matches hand-tuned learning rates across more than a dozen diverse machine learning problems.
arXiv Detail & Related papers (2023-01-18T19:00:50Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
We propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $tilde O(dsqrtH3K)$.
Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
arXiv Detail & Related papers (2022-12-12T18:58:59Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive
Least-Squares [8.443742714362521]
We develop an algorithm for one-pass learning which seeks to perfectly fit every new datapoint while changing the parameters in a direction that causes the least change to the predictions on previous datapoints.
Our algorithm uses the memory efficiently by exploiting the structure of the streaming data via an incremental principal component analysis (IPCA)
Our experiments show the effectiveness of the proposed method compared to the baselines.
arXiv Detail & Related papers (2022-07-28T02:01:31Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - GLISTER: Generalization based Data Subset Selection for Efficient and
Robust Learning [11.220278271829699]
We introduce Glister, a GeneraLIzation based data Subset selecTion for Efficient and Robust learning framework.
We propose an iterative online algorithm Glister-Online, which performs data selection iteratively along with the parameter updates.
We show that our framework improves upon state of the art both in efficiency and accuracy (in cases (a) and (c)) and is more efficient compared to other state-of-the-art robust learning algorithms.
arXiv Detail & Related papers (2020-12-19T08:41:34Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.