HANNA: Hard-constraint Neural Network for Consistent Activity Coefficient Prediction
- URL: http://arxiv.org/abs/2407.18011v1
- Date: Thu, 25 Jul 2024 13:05:00 GMT
- Title: HANNA: Hard-constraint Neural Network for Consistent Activity Coefficient Prediction
- Authors: Thomas Specht, Mayank Nagda, Sophie Fellenz, Stephan Mandt, Hans Hasse, Fabian Jirasek,
- Abstract summary: We present the first hard-constraint neural network for predicting activity coefficients (HANNA)
HANNA is a thermodynamic mixture property that is the basis for many applications in science and engineering.
The model was trained and evaluated on 317,421 data points for activity coefficients in binary mixtures from the Dortmund Data Bank.
- Score: 16.024570580558954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first hard-constraint neural network for predicting activity coefficients (HANNA), a thermodynamic mixture property that is the basis for many applications in science and engineering. Unlike traditional neural networks, which ignore physical laws and result in inconsistent predictions, our model is designed to strictly adhere to all thermodynamic consistency criteria. By leveraging deep-set neural networks, HANNA maintains symmetry under the permutation of the components. Furthermore, by hard-coding physical constraints in the network architecture, we ensure consistency with the Gibbs-Duhem equation and in modeling the pure components. The model was trained and evaluated on 317,421 data points for activity coefficients in binary mixtures from the Dortmund Data Bank, achieving significantly higher prediction accuracies than the current state-of-the-art model UNIFAC. Moreover, HANNA only requires the SMILES of the components as input, making it applicable to any binary mixture of interest. HANNA is fully open-source and available for free use.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions.
We include the Gibbs-Duhem equation explicitly in the loss function for training neural networks.
arXiv Detail & Related papers (2023-05-31T07:36:45Z) - Efficient Implementation of Non-linear Flow Law Using Neural Network
into the Abaqus Explicit FEM code [0.0]
An Artificial Neural Network (ANN) model is used in a finite element formulation to define the flow law of a metallic material.
The results obtained show a very high capability of the ANN to replace the analytical formulation of a Johnson-Cook behavior law in a finite element code.
arXiv Detail & Related papers (2022-09-07T14:37:09Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
We develop a scalable and expressive Graph Neural Networks model, ForceNet, to approximate atomic forces.
Our proposed ForceNet is able to predict atomic forces more accurately than state-of-the-art physics-based GNNs.
arXiv Detail & Related papers (2021-03-02T03:09:06Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - GINNs: Graph-Informed Neural Networks for Multiscale Physics [1.1470070927586016]
Graph-Informed Neural Network (GINN) is a hybrid approach combining deep learning with probabilistic graphical models (PGMs)
GINNs produce kernel density estimates of relevant non-Gaussian, skewed QoIs with tight confidence intervals.
arXiv Detail & Related papers (2020-06-26T05:47:45Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
We propose a new class of data-driven, physics-based, neural networks for modeling of strain rate independent processes at the material point level.
The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation.
We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, with strain hardening and softening strain.
arXiv Detail & Related papers (2020-05-25T15:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.