GaussianSR: High Fidelity 2D Gaussian Splatting for Arbitrary-Scale Image Super-Resolution
- URL: http://arxiv.org/abs/2407.18046v1
- Date: Thu, 25 Jul 2024 13:53:48 GMT
- Title: GaussianSR: High Fidelity 2D Gaussian Splatting for Arbitrary-Scale Image Super-Resolution
- Authors: Jintong Hu, Bin Xia, Bin Chen, Wenming Yang, Lei Zhang,
- Abstract summary: Implicit neural representations (INRs) have significantly advanced the field of arbitrary-scale super-resolution (ASSR) of images.
Most existing INR-based ASSR networks first extract features from the given low-resolution image using an encoder, and then render the super-resolved result via a multi-layer perceptron decoder.
We propose a novel ASSR method named GaussianSR that overcomes this limitation through 2D Gaussian Splatting (2DGS)
- Score: 29.49617080140511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit neural representations (INRs) have significantly advanced the field of arbitrary-scale super-resolution (ASSR) of images. Most existing INR-based ASSR networks first extract features from the given low-resolution image using an encoder, and then render the super-resolved result via a multi-layer perceptron decoder. Although these approaches have shown promising results, their performance is constrained by the limited representation ability of discrete latent codes in the encoded features. In this paper, we propose a novel ASSR method named GaussianSR that overcomes this limitation through 2D Gaussian Splatting (2DGS). Unlike traditional methods that treat pixels as discrete points, GaussianSR represents each pixel as a continuous Gaussian field. The encoded features are simultaneously refined and upsampled by rendering the mutually stacked Gaussian fields. As a result, long-range dependencies are established to enhance representation ability. In addition, a classifier is developed to dynamically assign Gaussian kernels to all pixels to further improve flexibility. All components of GaussianSR (i.e., encoder, classifier, Gaussian kernels, and decoder) are jointly learned end-to-end. Experiments demonstrate that GaussianSR achieves superior ASSR performance with fewer parameters than existing methods while enjoying interpretable and content-aware feature aggregations.
Related papers
- DiffGS: Functional Gaussian Splatting Diffusion [33.07847512591061]
3D Gaussian Splatting (3DGS) has shown convincing performance in rendering speed and fidelity.
However, the generation of Gaussian Splatting remains a challenge due to its discreteness and unstructured nature.
We propose DiffGS, a general Gaussian generator based on latent diffusion models.
arXiv Detail & Related papers (2024-10-25T16:08:08Z) - PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussian is an efficient framework for learning generalizable 3D Gaussian reconstruction from arbitrary views.
Our method achieves state-of-the-art performance with good generalization to various numbers of views.
arXiv Detail & Related papers (2024-10-24T17:59:58Z) - GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling [40.743135560583816]
We introduce the Gaussian-Forest modeling framework, which hierarchically represents a scene as a forest of hybrid 3D Gaussians.
Experiments demonstrate that Gaussian-Forest not only maintains comparable speed and quality but also achieves a compression rate surpassing 10 times.
arXiv Detail & Related papers (2024-06-13T02:41:11Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
We present a novel way to design neural fields such that points can be queried with an adaptive Gaussian PSF.
With its theoretically guaranteed anti-aliasing, our method sets a new state of the art for arbitrary-scale single image super-resolution.
arXiv Detail & Related papers (2023-11-29T14:01:28Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
We introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format.
Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction.
LightGaussian achieves an average 15x compression rate while boosting FPS from 144 to 237 within the 3D-GS framework.
arXiv Detail & Related papers (2023-11-28T21:39:20Z) - Super-Resolution Neural Operator [5.018040244860608]
We propose a framework that can resolve high-resolution (HR) images at arbitrary scales from the low-resolution (LR) counterparts.
Treating the LR-HR image pairs as continuous functions approximated with different grid sizes, SRNO learns the mapping between the corresponding function spaces.
Experiments show that SRNO outperforms existing continuous SR methods in terms of both accuracy and running time.
arXiv Detail & Related papers (2023-03-05T06:17:43Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - UltraSR: Spatial Encoding is a Missing Key for Implicit Image
Function-based Arbitrary-Scale Super-Resolution [74.82282301089994]
In this work, we propose UltraSR, a simple yet effective new network design based on implicit image functions.
We show that spatial encoding is indeed a missing key towards the next-stage high-accuracy implicit image function.
Our UltraSR sets new state-of-the-art performance on the DIV2K benchmark under all super-resolution scales.
arXiv Detail & Related papers (2021-03-23T17:36:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.