Trajectory-aligned Space-time Tokens for Few-shot Action Recognition
- URL: http://arxiv.org/abs/2407.18249v1
- Date: Thu, 25 Jul 2024 17:59:31 GMT
- Title: Trajectory-aligned Space-time Tokens for Few-shot Action Recognition
- Authors: Pulkit Kumar, Namitha Padmanabhan, Luke Luo, Sai Saketh Rambhatla, Abhinav Shrivastava,
- Abstract summary: We build trajectory-aligned tokens (TATs) that capture motion and appearance information.
This approach significantly reduces the data requirements while retaining essential information.
We demonstrate state-of-the-art results on few-shot action recognition across multiple datasets.
- Score: 34.97285458776108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple yet effective approach for few-shot action recognition, emphasizing the disentanglement of motion and appearance representations. By harnessing recent progress in tracking, specifically point trajectories and self-supervised representation learning, we build trajectory-aligned tokens (TATs) that capture motion and appearance information. This approach significantly reduces the data requirements while retaining essential information. To process these representations, we use a Masked Space-time Transformer that effectively learns to aggregate information to facilitate few-shot action recognition. We demonstrate state-of-the-art results on few-shot action recognition across multiple datasets. Our project page is available at https://www.cs.umd.edu/~pulkit/tats
Related papers
- Trokens: Semantic-Aware Relational Trajectory Tokens for Few-Shot Action Recognition [36.662223760818584]
Trokens is a novel approach that transforms trajectory points into semantic-aware relational tokens for action recognition.<n>We develop a motion modeling framework that captures both intra-trajectory dynamics through the Histogram of Oriented Displacements (HoD) and inter-trajectory relationships to model complex action patterns.<n>Our approach effectively combines these trajectory tokens with semantic features to enhance appearance features with motion information, achieving state-of-the-art performance across six diverse few-shot action recognition benchmarks.
arXiv Detail & Related papers (2025-08-05T17:59:58Z) - Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
We propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction.
To address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism.
Our method achieves superior results compared to previous approaches and can be further extended to multi-action videos.
arXiv Detail & Related papers (2024-08-28T17:59:05Z) - On the Importance of Spatial Relations for Few-shot Action Recognition [109.2312001355221]
In this paper, we investigate the importance of spatial relations and propose a more accurate few-shot action recognition method.
A novel Spatial Alignment Cross Transformer (SA-CT) learns to re-adjust the spatial relations and incorporates the temporal information.
Experiments reveal that, even without using any temporal information, the performance of SA-CT is comparable to temporal based methods on 3/4 benchmarks.
arXiv Detail & Related papers (2023-08-14T12:58:02Z) - Seeing in Flowing: Adapting CLIP for Action Recognition with Motion
Prompts Learning [14.292812802621707]
Contrastive Language-Image Pre-training (CLIP) has recently shown remarkable generalization on "zero-shot" training.
We explore the adaptation of CLIP to achieve a more efficient and generalized action recognition method.
Our method outperforms most existing state-of-the-art methods by a significant margin on "few-shot" and "zero-shot" training.
arXiv Detail & Related papers (2023-08-09T09:33:45Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
We study the task of robust feature representations, aiming to generalize well on multiple datasets for action recognition.
Here, we propose a novel multi-dataset training paradigm, MultiTrain, with the design of two new loss terms, namely informative loss and projection loss.
We verify the effectiveness of our method on five challenging datasets, Kinetics-400, Kinetics-700, Moments-in-Time, Activitynet and Something-something-v2.
arXiv Detail & Related papers (2022-09-26T01:30:43Z) - MAPLE: Masked Pseudo-Labeling autoEncoder for Semi-supervised Point
Cloud Action Recognition [160.49403075559158]
We propose a Masked Pseudo-Labeling autoEncoder (textbfMAPLE) framework for point cloud action recognition.
In particular, we design a novel and efficient textbfDecoupled textbfspatial-textbftemporal TranstextbfFormer (textbfDestFormer) as the backbone of MAPLE.
MAPLE achieves superior results on three public benchmarks and outperforms the state-of-the-art method by 8.08% accuracy on the MSR-Action3
arXiv Detail & Related papers (2022-09-01T12:32:40Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z) - Towards Reading Beyond Faces for Sparsity-Aware 4D Affect Recognition [55.15661254072032]
We present a sparsity-aware deep network for automatic 4D facial expression recognition (FER)
We first propose a novel augmentation method to combat the data limitation problem for deep learning.
We then present a sparsity-aware deep network to compute the sparse representations of convolutional features over multi-views.
arXiv Detail & Related papers (2020-02-08T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.