Neural Modulation Alteration to Positive and Negative Emotions in Depressed Patients: Insights from fMRI Using Positive/Negative Emotion Atlas
- URL: http://arxiv.org/abs/2407.18492v1
- Date: Fri, 26 Jul 2024 03:52:08 GMT
- Title: Neural Modulation Alteration to Positive and Negative Emotions in Depressed Patients: Insights from fMRI Using Positive/Negative Emotion Atlas
- Authors: Yu Feng, Weiming Zeng, Yifan Xie, Hongyu Chen, Lei Wang, Yingying Wang, Hongjie Yan, Kaile Zhang, Ran Tao, Wai Ting Siok, Nizhuan Wang,
- Abstract summary: FMRI is a cutting-edge medical imaging technology renowned for its high spatial resolution and dynamic temporal information.
We created positive emotion atlas (PEA) and negative emotion atlas (NEA)
We examined changes in depression patients using these atlases and evaluated their diagnostic performance based on machine learning.
- Score: 14.281212655952105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Although it has been noticed that depressed patients show differences in processing emotions, the precise neural modulation mechanisms of positive and negative emotions remain elusive. FMRI is a cutting-edge medical imaging technology renowned for its high spatial resolution and dynamic temporal information, making it particularly suitable for the neural dynamics of depression research. Methods: To address this gap, our study firstly leveraged fMRI to delineate activated regions associated with positive and negative emotions in healthy individuals, resulting in the creation of positive emotion atlas (PEA) and negative emotion atlas (NEA). Subsequently, we examined neuroimaging changes in depression patients using these atlases and evaluated their diagnostic performance based on machine learning. Results: Our findings demonstrate that the classification accuracy of depressed patients based on PEA and NEA exceeded 0.70, a notable improvement compared to the whole-brain atlases. Furthermore, ALFF analysis unveiled significant differences between depressed patients and healthy controls in eight functional clusters during the NEA, focusing on the left cuneus, cingulate gyrus, and superior parietal lobule. In contrast, the PEA revealed more pronounced differences across fifteen clusters, involving the right fusiform gyrus, parahippocampal gyrus, and inferior parietal lobule. Limitations: Due to the limited sample size and subtypes of depressed patients, the efficacy may need further validation in future. Conclusions: These findings emphasize the complex interplay between emotion modulation and depression, showcasing significant alterations in both PEA and NEA among depression patients. This research enhances our understanding of emotion modulation in depression, with implications for diagnosis and treatment evaluation.
Related papers
- Exploring Facial Biomarkers for Depression through Temporal Analysis of Action Units [0.0]
We analyzed facial expressions from video data of participants classified with or without depression.
Results indicate significant differences in the intensities of AUs associated with sadness and happiness between the groups.
arXiv Detail & Related papers (2024-07-18T17:55:01Z) - Functional Graph Contrastive Learning of Hyperscanning EEG Reveals
Emotional Contagion Evoked by Stereotype-Based Stressors [1.8925617030516924]
This study focuses on the context of stereotype-based stress (SBS) during collaborative problem-solving tasks among female pairs.
Through an exploration of emotional contagion, this study seeks to unveil its underlying mechanisms and effects.
arXiv Detail & Related papers (2023-08-22T09:04:14Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - I am Only Happy When There is Light: The Impact of Environmental Changes
on Affective Facial Expressions Recognition [65.69256728493015]
We study the impact of different image conditions on the recognition of arousal from human facial expressions.
Our results show how the interpretation of human affective states can differ greatly in either the positive or negative direction.
arXiv Detail & Related papers (2022-10-28T16:28:26Z) - The Face of Affective Disorders [7.4005714204825646]
We study the statistical properties of facial behaviour altered by the regulation of brain arousal in the clinical domain of psychiatry.
We name the presented measurement in the sense of the classical scalp based obtrusive sensors Opto Electronic Encephalography (OEG) which relies solely on modern camera based real-time signal processing and computer vision.
arXiv Detail & Related papers (2022-08-02T11:28:17Z) - Depression Recognition using Remote Photoplethysmography from Facial
Videos [0.3867363075280544]
Depression is a mental illness that may be harmful to an individual's health.
This work analyzes physiological signals to observe if different depressive states have a noticeable impact on the blood volume pulse (BVP) and the heart rate variability (HRV)
We propose a novel scheme that directly extracts them from facial videos, just based on visual information, removing the need for any contact-based device.
arXiv Detail & Related papers (2022-06-09T10:23:49Z) - Speech and the n-Back task as a lens into depression. How combining both
may allow us to isolate different core symptoms of depression [12.251313610613693]
We show that speech alterations are more strongly associated with subsets of key depression symptoms.
We present a novel large, cross-sectional, multi-modal dataset collected at Thymia.
We then present a set of experiments that highlight the association between different speech and n-Back markers at the PHQ-8 item level.
arXiv Detail & Related papers (2022-03-30T09:12:59Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.