Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
- URL: http://arxiv.org/abs/2407.18707v1
- Date: Fri, 26 Jul 2024 12:45:53 GMT
- Title: Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
- Authors: Steven Adams, Patanè, Morteza Lahijanian, Luca Laurenti,
- Abstract summary: We present an algorithmic framework to approximate a neural network of finite width and depth.
We iteratively approximate the output distribution of each layer of the neural network as a mixture of Gaussian processes.
Our results can represent an important step towards understanding neural network predictions.
- Score: 11.729744197698718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Infinitely wide or deep neural networks (NNs) with independent and identically distributed (i.i.d.) parameters have been shown to be equivalent to Gaussian processes. Because of the favorable properties of Gaussian processes, this equivalence is commonly employed to analyze neural networks and has led to various breakthroughs over the years. However, neural networks and Gaussian processes are equivalent only in the limit; in the finite case there are currently no methods available to approximate a trained neural network with a Gaussian model with bounds on the approximation error. In this work, we present an algorithmic framework to approximate a neural network of finite width and depth, and with not necessarily i.i.d. parameters, with a mixture of Gaussian processes with error bounds on the approximation error. In particular, we consider the Wasserstein distance to quantify the closeness between probabilistic models and, by relying on tools from optimal transport and Gaussian processes, we iteratively approximate the output distribution of each layer of the neural network as a mixture of Gaussian processes. Crucially, for any NN and $\epsilon >0$ our approach is able to return a mixture of Gaussian processes that is $\epsilon$-close to the NN at a finite set of input points. Furthermore, we rely on the differentiability of the resulting error bound to show how our approach can be employed to tune the parameters of a NN to mimic the functional behavior of a given Gaussian process, e.g., for prior selection in the context of Bayesian inference. We empirically investigate the effectiveness of our results on both regression and classification problems with various neural network architectures. Our experiments highlight how our results can represent an important step towards understanding neural network predictions and formally quantifying their uncertainty.
Related papers
- Random ReLU Neural Networks as Non-Gaussian Processes [20.607307985674428]
We show that random neural networks with rectified linear unit activation functions are well-defined non-Gaussian processes.
As a by-product, we demonstrate that these networks are solutions to differential equations driven by impulsive white noise.
arXiv Detail & Related papers (2024-05-16T16:28:11Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - An Overview of Uncertainty Quantification Methods for Infinite Neural
Networks [0.0]
We review methods for quantifying uncertainty in infinite-width neural networks.
We make use of several equivalence results along the way to obtain exact closed-form solutions for predictive uncertainty.
arXiv Detail & Related papers (2022-01-13T00:03:22Z) - Scale Mixtures of Neural Network Gaussian Processes [22.07524388784668]
We introduce a scale mixture of $mathrmNNGP$ for which we introduce a prior on the scale of the last-layer parameters.
We show that with certain scale priors, we obtain heavytailed processes, and we recover Student's $t$ processes in the case of inverse gamma distributions.
We further analyze the neural networks with our prior setting and trained with gradient descents and obtain similar results as for $mathrmNNGP$.
arXiv Detail & Related papers (2021-07-03T11:02:18Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - The Ridgelet Prior: A Covariance Function Approach to Prior
Specification for Bayesian Neural Networks [4.307812758854161]
We construct a prior distribution for the parameters of a network that approximates the posited Gaussian process in the output space of the network.
This establishes the property that a Bayesian neural network can approximate any Gaussian process whose covariance function is sufficiently regular.
arXiv Detail & Related papers (2020-10-16T16:39:45Z) - Disentangling the Gauss-Newton Method and Approximate Inference for
Neural Networks [96.87076679064499]
We disentangle the generalized Gauss-Newton and approximate inference for Bayesian deep learning.
We find that the Gauss-Newton method simplifies the underlying probabilistic model significantly.
The connection to Gaussian processes enables new function-space inference algorithms.
arXiv Detail & Related papers (2020-07-21T17:42:58Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
We propose a new single-model based approach to quantify uncertainty in deep neural networks.
We use a mean-field approximation formula to compute an analytically intractable integral.
Empirically, the proposed approach performs competitively when compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-06-13T07:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.