Embedding And Clustering Your Data Can Improve Contrastive Pretraining
- URL: http://arxiv.org/abs/2407.18887v1
- Date: Fri, 26 Jul 2024 17:36:40 GMT
- Title: Embedding And Clustering Your Data Can Improve Contrastive Pretraining
- Authors: Luke Merrick,
- Abstract summary: We explore extending training data stratification beyond source granularity by leveraging a pretrained text embedding model and the classic k-means clustering algorithm.
Experimentally, we observe a notable increase in NDCG@10 when pretraining a BERT-based text embedding model on query-passage pairs from the MSMARCO passage retrieval dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies of large-scale contrastive pretraining in the text embedding domain show that using single-source minibatches, rather than mixed-source minibatches, can substantially improve overall model accuracy. In this work, we explore extending training data stratification beyond source granularity by leveraging a pretrained text embedding model and the classic k-means clustering algorithm to further split training data apart by the semantic clusters within each source. Experimentally, we observe a notable increase in NDCG@10 when pretraining a BERT-based text embedding model on query-passage pairs from the MSMARCO passage retrieval dataset. Additionally, we conceptually connect our clustering approach to both the Topic Aware Sampling (TAS) aspect of the TAS-B methodology and the nearest-neighbor-based hard-negative mining aspect of the ANCE methodology and discuss how this unified view motivates future lines of research on the organization of contrastive pretraining data.
Related papers
- A Bayesian Approach to Data Point Selection [24.98069363998565]
Data point selection (DPS) is becoming a critical topic in deep learning.
Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation.
We propose a novel Bayesian approach to DPS.
arXiv Detail & Related papers (2024-11-06T09:04:13Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
Relation extraction has been particularly challenging in low-resource scenarios and domains.
Recent literature has tackled low-resource RE by self-supervised learning.
We propose to pretrain and finetune the RE model using consistent objectives of contrastive learning.
arXiv Detail & Related papers (2022-12-21T07:30:22Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - Meeting Summarization with Pre-training and Clustering Methods [6.47783315109491]
HMNetcitehmnet is a hierarchical network that employs both a word-level transformer and a turn-level transformer, as the baseline.
We extend the locate-then-summarize approach of QMSumciteqmsum with an intermediate clustering step.
We compare the performance of our baseline models with BART, a state-of-the-art language model that is effective for summarization.
arXiv Detail & Related papers (2021-11-16T03:14:40Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
Constrained clustering can leverage prior information on a growing amount of only partially labeled data.
We propose a novel framework for constrained clustering that is intuitive, interpretable, and can be trained efficiently in the framework of gradient variational inference.
arXiv Detail & Related papers (2021-06-11T13:38:09Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.