HRP: Human Affordances for Robotic Pre-Training
- URL: http://arxiv.org/abs/2407.18911v1
- Date: Fri, 26 Jul 2024 17:59:52 GMT
- Title: HRP: Human Affordances for Robotic Pre-Training
- Authors: Mohan Kumar Srirama, Sudeep Dasari, Shikhar Bahl, Abhinav Gupta,
- Abstract summary: We present a framework for pre-training representations on hand, object, and contact.
We experimentally demonstrate (using 3000+ robot trials) that this affordance pre-training scheme boosts performance by a minimum of 15% on 5 real-world tasks.
- Score: 15.92416819748365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to *generalize* to various tasks in the wild, robotic agents will need a suitable representation (i.e., vision network) that enables the robot to predict optimal actions given high dimensional vision inputs. However, learning such a representation requires an extreme amount of diverse training data, which is prohibitively expensive to collect on a real robot. How can we overcome this problem? Instead of collecting more robot data, this paper proposes using internet-scale, human videos to extract "affordances," both at the environment and agent level, and distill them into a pre-trained representation. We present a simple framework for pre-training representations on hand, object, and contact "affordance labels" that highlight relevant objects in images and how to interact with them. These affordances are automatically extracted from human video data (with the help of off-the-shelf computer vision modules) and used to fine-tune existing representations. Our approach can efficiently fine-tune *any* existing representation, and results in models with stronger downstream robotic performance across the board. We experimentally demonstrate (using 3000+ robot trials) that this affordance pre-training scheme boosts performance by a minimum of 15% on 5 real-world tasks, which consider three diverse robot morphologies (including a dexterous hand). Unlike prior works in the space, these representations improve performance across 3 different camera views. Quantitatively, we find that our approach leads to higher levels of generalization in out-of-distribution settings. For code, weights, and data check: https://hrp-robot.github.io
Related papers
- Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
We propose a foundation representation learning framework capturing both visual features and the dynamics information such as actions and proprioceptions of manipulation tasks.
Specifically, we pre-train a visual encoder on the DROID robotic dataset and leverage motion-relevant data such as robot proprioceptive states and actions.
We introduce a novel contrastive loss that aligns visual observations with the robot's proprioceptive state-action dynamics, combined with a behavior cloning (BC)-like actor loss to predict actions during pre-training, along with a time contrastive loss.
arXiv Detail & Related papers (2024-10-29T17:58:13Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
When operating in service of people, robots need to optimize rewards aligned with end-user preferences.
We propose Representation-Aligned Preference-based Learning (RAPL), a method for solving the visual representation alignment problem.
arXiv Detail & Related papers (2023-10-11T23:04:07Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
Domain-agnostic Video Discriminator (DVD) learns multitask reward functions by training a discriminator to classify whether two videos are performing the same task.
DVD can generalize by virtue of learning from a small amount of robot data with a broad dataset of human videos.
DVD can be combined with visual model predictive control to solve robotic manipulation tasks on a real WidowX200 robot in an unseen environment from a single human demo.
arXiv Detail & Related papers (2021-03-31T05:25:05Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
We propose the use of a Convolution Neural Network (CNN) to segment the robot hand from an image in an egocentric view.
We fine-tuned the Mask-RCNN network for the specific task of segmenting the hand of the humanoid robot Vizzy.
arXiv Detail & Related papers (2021-02-09T10:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.