Large Language Models as Co-Pilots for Causal Inference in Medical Studies
- URL: http://arxiv.org/abs/2407.19118v1
- Date: Fri, 26 Jul 2024 22:43:15 GMT
- Title: Large Language Models as Co-Pilots for Causal Inference in Medical Studies
- Authors: Ahmed Alaa, Rachael V. Phillips, Emre Kıcıman, Laura B. Balzer, Mark van der Laan, Maya Petersen,
- Abstract summary: We explore the use of large language models (LLMs) as co-pilot tools to assist researchers in identifying study design flaws that undermine the validity of causal inferences.
We propose a conceptual framework for LLMs as causal co-pilots that encode domain knowledge across various fields, engaging with researchers in natural language interactions to provide contextualized assistance in study design.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The validity of medical studies based on real-world clinical data, such as observational studies, depends on critical assumptions necessary for drawing causal conclusions about medical interventions. Many published studies are flawed because they violate these assumptions and entail biases such as residual confounding, selection bias, and misalignment between treatment and measurement times. Although researchers are aware of these pitfalls, they continue to occur because anticipating and addressing them in the context of a specific study can be challenging without a large, often unwieldy, interdisciplinary team with extensive expertise. To address this expertise gap, we explore the use of large language models (LLMs) as co-pilot tools to assist researchers in identifying study design flaws that undermine the validity of causal inferences. We propose a conceptual framework for LLMs as causal co-pilots that encode domain knowledge across various fields, engaging with researchers in natural language interactions to provide contextualized assistance in study design. We provide illustrative examples of how LLMs can function as causal co-pilots, propose a structured framework for their grounding in existing causal inference frameworks, and highlight the unique challenges and opportunities in adapting LLMs for reliable use in epidemiological research.
Related papers
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering [14.198330378235632]
We use Multiple Choice and Abstractive Question Answering to conduct a large-scale empirical study on 22 datasets in three generalist and three specialist biomedical sub-domains.
Our multifaceted analysis of the performance of 15 LLMs uncovers success factors such as instruction tuning that lead to improved recall and comprehension.
We show that while recently proposed domain-adapted models may lack adequate knowledge, directly fine-tuning on our collected medical knowledge datasets shows encouraging results.
We complement the quantitative results with a skill-oriented manual error analysis, which reveals a significant gap between the models' capabilities to simply recall necessary knowledge and to integrate it with the presented
arXiv Detail & Related papers (2024-06-06T02:43:21Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Causal Machine Learning for Healthcare and Precision Medicine [16.846051073534966]
Causal machine learning (CML) has experienced increasing popularity in healthcare.
We explore how causal inference can be incorporated into different aspects of clinical decision support systems.
arXiv Detail & Related papers (2022-05-23T15:45:21Z) - An introduction to causal reasoning in health analytics [2.199093822766999]
We will try to highlight some of the drawbacks that may arise in traditional machine learning and statistical approaches to analyze the observational data.
We will demonstrate the applications of causal inference in tackling some common machine learning issues.
arXiv Detail & Related papers (2021-05-10T20:25:56Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.