On Behalf of the Stakeholders: Trends in NLP Model Interpretability in the Era of LLMs
- URL: http://arxiv.org/abs/2407.19200v1
- Date: Sat, 27 Jul 2024 08:00:27 GMT
- Title: On Behalf of the Stakeholders: Trends in NLP Model Interpretability in the Era of LLMs
- Authors: Nitay Calderon, Roi Reichart,
- Abstract summary: This paper addresses three fundamental questions: Why do we need interpretability, what are we interpreting, and how?
By exploring these questions, we examine existing interpretability paradigms, their properties, and their relevance to different stakeholders.
Our analysis reveals significant disparities between NLP developers and non-developer users, as well as between research fields, underscoring the diverse needs of stakeholders.
- Score: 20.589396689900614
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in NLP systems, particularly with the introduction of LLMs, have led to widespread adoption of these systems by a broad spectrum of users across various domains, impacting decision-making, the job market, society, and scientific research. This surge in usage has led to an explosion in NLP model interpretability and analysis research, accompanied by numerous technical surveys. Yet, these surveys often overlook the needs and perspectives of explanation stakeholders. In this paper, we address three fundamental questions: Why do we need interpretability, what are we interpreting, and how? By exploring these questions, we examine existing interpretability paradigms, their properties, and their relevance to different stakeholders. We further explore the practical implications of these paradigms by analyzing trends from the past decade across multiple research fields. To this end, we retrieved thousands of papers and employed an LLM to characterize them. Our analysis reveals significant disparities between NLP developers and non-developer users, as well as between research fields, underscoring the diverse needs of stakeholders. For example, explanations of internal model components are rarely used outside the NLP field. We hope this paper informs the future design, development, and application of methods that align with the objectives and requirements of various stakeholders.
Related papers
- A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
Large Language Models (LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities.
Their widespread deployment has brought to light significant concerns regarding biases embedded within these models.
This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases.
arXiv Detail & Related papers (2024-09-24T19:50:38Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - The What, Why, and How of Context Length Extension Techniques in Large
Language Models -- A Detailed Survey [6.516561905186376]
The advent of Large Language Models (LLMs) represents a notable breakthrough in Natural Language Processing (NLP)
We study the inherent challenges associated with extending context length and present an organized overview of the existing strategies employed by researchers.
We explore whether there is a consensus within the research community regarding evaluation standards and identify areas where further agreement is needed.
arXiv Detail & Related papers (2024-01-15T18:07:21Z) - Multi-agent Reinforcement Learning: A Comprehensive Survey [10.186029242664931]
Multi-agent systems (MAS) are widely prevalent and crucially important in numerous real-world applications.
Despite their ubiquity, the development of intelligent decision-making agents in MAS poses several open challenges to their effective implementation.
This survey examines these challenges, placing an emphasis on studying seminal concepts from game theory (GT) and machine learning (ML)
arXiv Detail & Related papers (2023-12-15T23:16:54Z) - The Shifted and The Overlooked: A Task-oriented Investigation of
User-GPT Interactions [114.67699010359637]
We analyze a large-scale collection of real user queries to GPT.
We find that tasks such as design'' and planning'' are prevalent in user interactions but are largely neglected or different from traditional NLP benchmarks.
arXiv Detail & Related papers (2023-10-19T02:12:17Z) - The Thousand Faces of Explainable AI Along the Machine Learning Life
Cycle: Industrial Reality and Current State of Research [37.69303106863453]
Our findings are based on an extensive series of interviews regarding the role and applicability of XAI along the Machine Learning lifecycle.
Our findings also confirm that more efforts are needed to enable also non-expert users' interpretation and understanding of opaque AI models.
arXiv Detail & Related papers (2023-10-11T20:45:49Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.
This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.
We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - Surveying (Dis)Parities and Concerns of Compute Hungry NLP Research [75.84463664853125]
We provide a first attempt to quantify concerns regarding three topics, namely, environmental impact, equity, and impact on peer reviewing.
We capture existing (dis)parities between different and within groups with respect to seniority, academia, and industry.
We devise recommendations to mitigate found disparities, some of which already successfully implemented.
arXiv Detail & Related papers (2023-06-29T12:44:53Z) - Human Factors in Model Interpretability: Industry Practices, Challenges,
and Needs [28.645803845464915]
We conduct interviews with industry practitioners to understand how they conceive of and design for interpretability while they plan, build, and use their models.
Based on our results, we differentiate interpretability roles, processes, goals and strategies as they exist within organizations making heavy use of ML models.
The characterization of interpretability work that emerges from our analysis suggests that model interpretability frequently involves cooperation and mental model comparison between people in different roles.
arXiv Detail & Related papers (2020-04-23T19:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.