Magic3DSketch: Create Colorful 3D Models From Sketch-Based 3D Modeling Guided by Text and Language-Image Pre-Training
- URL: http://arxiv.org/abs/2407.19225v1
- Date: Sat, 27 Jul 2024 09:59:13 GMT
- Title: Magic3DSketch: Create Colorful 3D Models From Sketch-Based 3D Modeling Guided by Text and Language-Image Pre-Training
- Authors: Ying Zang, Yidong Han, Chaotao Ding, Jianqi Zhang, Tianrun Chen,
- Abstract summary: Traditional methods like Computer-Aided Design (CAD) are often too labor-intensive and skill-demanding, making it challenging for novice users.
Our proposed method, Magic3DSketch, employs a novel technique that encodes sketches to predict a 3D mesh, guided by text descriptions.
Our method is also more useful and offers higher degree of controllability compared to existing text-to-3D approaches.
- Score: 2.9600148687385786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The requirement for 3D content is growing as AR/VR application emerges. At the same time, 3D modelling is only available for skillful experts, because traditional methods like Computer-Aided Design (CAD) are often too labor-intensive and skill-demanding, making it challenging for novice users. Our proposed method, Magic3DSketch, employs a novel technique that encodes sketches to predict a 3D mesh, guided by text descriptions and leveraging external prior knowledge obtained through text and language-image pre-training. The integration of language-image pre-trained neural networks complements the sparse and ambiguous nature of single-view sketch inputs. Our method is also more useful and offers higher degree of controllability compared to existing text-to-3D approaches, according to our user study. Moreover, Magic3DSketch achieves state-of-the-art performance in both synthetic and real dataset with the capability of producing more detailed structures and realistic shapes with the help of text input. Users are also more satisfied with models obtained by Magic3DSketch according to our user study. Additionally, we are also the first, to our knowledge, add color based on text description to the sketch-derived shapes. By combining sketches and text guidance with the help of language-image pretrained models, our Magic3DSketch can allow novice users to create custom 3D models with minimal effort and maximum creative freedom, with the potential to revolutionize future 3D modeling pipelines.
Related papers
- Sketch2Scene: Automatic Generation of Interactive 3D Game Scenes from User's Casual Sketches [50.51643519253066]
3D Content Generation is at the heart of many computer graphics applications, including video gaming, film-making, virtual and augmented reality, etc.
This paper proposes a novel deep-learning based approach for automatically generating interactive and playable 3D game scenes.
arXiv Detail & Related papers (2024-08-08T16:27:37Z) - Control3D: Towards Controllable Text-to-3D Generation [107.81136630589263]
We present a text-to-3D generation conditioning on the additional hand-drawn sketch, namely Control3D.
A 2D conditioned diffusion model (ControlNet) is remoulded to guide the learning of 3D scene parameterized as NeRF.
We exploit a pre-trained differentiable photo-to-sketch model to directly estimate the sketch of the rendered image over synthetic 3D scene.
arXiv Detail & Related papers (2023-11-09T15:50:32Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Deep3DSketch+: Rapid 3D Modeling from Single Free-hand Sketches [15.426513559370086]
We introduce a novel end-to-end approach, Deep3DSketch+, which performs 3D modeling using only a single free-hand sketch without inputting multiple sketches or view information.
Experiments demonstrated the effectiveness of our approach with the state-of-the-art (SOTA) performance on both synthetic and real datasets.
arXiv Detail & Related papers (2023-09-22T17:12:13Z) - CLIP-Guided Vision-Language Pre-training for Question Answering in 3D
Scenes [68.61199623705096]
We design a novel 3D pre-training Vision-Language method that helps a model learn semantically meaningful and transferable 3D scene point cloud representations.
We inject the representational power of the popular CLIP model into our 3D encoder by aligning the encoded 3D scene features with the corresponding 2D image and text embeddings.
We evaluate our model's 3D world reasoning capability on the downstream task of 3D Visual Question Answering.
arXiv Detail & Related papers (2023-04-12T16:52:29Z) - Make Your Brief Stroke Real and Stereoscopic: 3D-Aware Simplified Sketch
to Portrait Generation [51.64832538714455]
Existing studies only generate portraits in the 2D plane with fixed views, making the results less vivid.
In this paper, we present Stereoscopic Simplified Sketch-to-Portrait (SSSP), which explores the possibility of creating Stereoscopic 3D-aware portraits.
Our key insight is to design sketch-aware constraints that can fully exploit the prior knowledge of a tri-plane-based 3D-aware generative model.
arXiv Detail & Related papers (2023-02-14T06:28:42Z) - Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and
Text-to-Image Diffusion Models [44.34479731617561]
We introduce explicit 3D shape priors into the CLIP-guided 3D optimization process.
We present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model.
Our method, Dream3D, is capable of generating imaginative 3D content with superior visual quality and shape accuracy.
arXiv Detail & Related papers (2022-12-28T18:23:47Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
In this paper, we propose an interactive framework for annotating 3D object geometry from point cloud data and RGB imagery.
Our framework targets naive users without artistic or graphics expertise.
arXiv Detail & Related papers (2020-08-24T21:51:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.