Approximate learning of parsimonious Bayesian context trees
- URL: http://arxiv.org/abs/2407.19236v1
- Date: Sat, 27 Jul 2024 11:50:40 GMT
- Title: Approximate learning of parsimonious Bayesian context trees
- Authors: Daniyar Ghani, Nicholas A. Heard, Francesco Sanna Passino,
- Abstract summary: The proposed framework is tested on synthetic and real-world data examples.
It outperforms existing sequence models when fitted to real protein sequences and honeypot computer terminal sessions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models for categorical sequences typically assume exchangeable or first-order dependent sequence elements. These are common assumptions, for example, in models of computer malware traces and protein sequences. Although such simplifying assumptions lead to computational tractability, these models fail to capture long-range, complex dependence structures that may be harnessed for greater predictive power. To this end, a Bayesian modelling framework is proposed to parsimoniously capture rich dependence structures in categorical sequences, with memory efficiency suitable for real-time processing of data streams. Parsimonious Bayesian context trees are introduced as a form of variable-order Markov model with conjugate prior distributions. The novel framework requires fewer parameters than fixed-order Markov models by dropping redundant dependencies and clustering sequential contexts. Approximate inference on the context tree structure is performed via a computationally efficient model-based agglomerative clustering procedure. The proposed framework is tested on synthetic and real-world data examples, and it outperforms existing sequence models when fitted to real protein sequences and honeypot computer terminal sessions.
Related papers
- DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
In graph-structured data, structured sparsity and smoothness tend to cluster together.
We propose a new prior for high dimensional parameters with graphical relations.
We use it to detect structured sparsity and smoothness simultaneously.
arXiv Detail & Related papers (2021-07-06T10:10:03Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
We present an efficient dynamic programming algorithm performing exact marginal inference of separable permutations.
The resulting seq2seq model exhibits better systematic generalization than standard models on synthetic problems and NLP tasks.
arXiv Detail & Related papers (2021-06-06T21:53:54Z) - Group selection and shrinkage: Structured sparsity for semiparametric
additive models [0.0]
Sparse regression and classification estimators that respect group structures have application to an assortment of statistical and machine learning problems.
We develop a framework for fitting the nonparametric surface and present finite error models.
We demonstrate their efficacy in modeling foot and economic predictors using many predictors.
arXiv Detail & Related papers (2021-05-25T17:00:25Z) - nTreeClus: a Tree-based Sequence Encoder for Clustering Categorical
Series [0.0]
This paper proposes a new Model-based approach for clustering sequence data, namely nTreeClus.
Adopting this new representation, we cluster sequences, considering the inherent patterns in categorical time series.
The empirical evaluation using synthetic and real datasets, protein sequences, and categorical time series showed that nTreeClus is competitive or superior to most state-of-the-art algorithms.
arXiv Detail & Related papers (2021-02-20T03:58:17Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Self-Reflective Variational Autoencoder [21.054722609128525]
Variational Autoencoder (VAE) is a powerful framework for learning latent variable generative models.
We introduce a solution, which we call self-reflective inference.
We empirically demonstrate the clear advantages of matching the variational posterior to the exact posterior.
arXiv Detail & Related papers (2020-07-10T05:05:26Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
Mixed membership blockmodel (MMSB) is a popular framework for community detection and network generation.
We present a flexible MMSB model, textitStruct-MMSB, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs)
Our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions.
arXiv Detail & Related papers (2020-02-21T19:32:32Z) - On the Discrepancy between Density Estimation and Sequence Generation [92.70116082182076]
log-likelihood is highly correlated with BLEU when we consider models within the same family.
We observe no correlation between rankings of models across different families.
arXiv Detail & Related papers (2020-02-17T20:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.