Can Modifying Data Address Graph Domain Adaptation?
- URL: http://arxiv.org/abs/2407.19311v1
- Date: Sat, 27 Jul 2024 17:56:31 GMT
- Title: Can Modifying Data Address Graph Domain Adaptation?
- Authors: Renhong Huang, Jiarong Xu, Xin Jiang, Ruichuan An, Yang Yang,
- Abstract summary: Unsupervised Graph Domain Adaptation (UGDA) aims to facilitate knowledge transfer from a labeled source graph to an unlabeled target graph.
We propose GraphAlign, a novel UGDA method that generates a small yet transferable graph.
By exclusively training a GNN on this new graph with classic Empirical Risk Minimization (ERM), GraphAlign attains exceptional performance on the target graph.
- Score: 20.343259091425708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated remarkable success in numerous graph analytical tasks. Yet, their effectiveness is often compromised in real-world scenarios due to distribution shifts, limiting their capacity for knowledge transfer across changing environments or domains. Recently, Unsupervised Graph Domain Adaptation (UGDA) has been introduced to resolve this issue. UGDA aims to facilitate knowledge transfer from a labeled source graph to an unlabeled target graph. Current UGDA efforts primarily focus on model-centric methods, such as employing domain invariant learning strategies and designing model architectures. However, our critical examination reveals the limitations inherent to these model-centric methods, while a data-centric method allowed to modify the source graph provably demonstrates considerable potential. This insight motivates us to explore UGDA from a data-centric perspective. By revisiting the theoretical generalization bound for UGDA, we identify two data-centric principles for UGDA: alignment principle and rescaling principle. Guided by these principles, we propose GraphAlign, a novel UGDA method that generates a small yet transferable graph. By exclusively training a GNN on this new graph with classic Empirical Risk Minimization (ERM), GraphAlign attains exceptional performance on the target graph. Extensive experiments under various transfer scenarios demonstrate the GraphAlign outperforms the best baselines by an average of 2.16%, training on the generated graph as small as 0.25~1% of the original training graph.
Related papers
- GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
Source-free domain adaptation is a crucial machine learning topic, as it contains numerous applications in the real world.
Recent graph neural network (GNN) approaches can suffer from serious performance decline due to domain shift and label scarcity.
We propose a novel method named Graph Diffusion-based Alignment with Jigsaw (GALA), tailored for source-free graph domain adaptation.
arXiv Detail & Related papers (2024-10-22T01:32:46Z) - Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation [31.106636947179005]
Unsupervised Graph Domain Adaptation involves the transfer of knowledge from a label-rich source graph to an unlabeled target graph.
We present the first comprehensive benchmark for unsupervised graph domain adaptation named GDABench.
We observe that the performance of current UGDA models varies significantly across different datasets and adaptation scenarios.
arXiv Detail & Related papers (2024-07-09T06:44:09Z) - Rethinking Propagation for Unsupervised Graph Domain Adaptation [17.443218657417454]
Unlabelled Graph Domain Adaptation (UGDA) aims to transfer knowledge from a labelled source graph to an unsupervised target graph.
We propose a simple yet effective approach called A2GNN for graph domain adaptation.
arXiv Detail & Related papers (2024-02-08T13:24:57Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - SizeShiftReg: a Regularization Method for Improving Size-Generalization
in Graph Neural Networks [5.008597638379227]
Graph neural networks (GNNs) have become the de facto model of choice for graph classification.
We propose a regularization strategy that can be applied to any GNN to improve its generalization capabilities without requiring access to the test data.
Our regularization is based on the idea of simulating a shift in the size of the training graphs using coarsening techniques.
arXiv Detail & Related papers (2022-07-16T09:50:45Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Source Free Unsupervised Graph Domain Adaptation [60.901775859601685]
Unsupervised Graph Domain Adaptation (UGDA) shows its practical value of reducing the labeling cost for node classification.
Most existing UGDA methods heavily rely on the labeled graph in the source domain.
In some real-world scenarios, the source graph is inaccessible because of privacy issues.
We propose a novel scenario named Source Free Unsupervised Graph Domain Adaptation (SFUGDA)
arXiv Detail & Related papers (2021-12-02T03:18:18Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data.
Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data.
This paper proposes Topology Adaptive Edge Dropping to improve generalization performance and learn robust GNN models.
arXiv Detail & Related papers (2021-06-05T13:20:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.