A Semi-supervised Fake News Detection using Sentiment Encoding and LSTM with Self-Attention
- URL: http://arxiv.org/abs/2407.19332v1
- Date: Sat, 27 Jul 2024 20:00:10 GMT
- Title: A Semi-supervised Fake News Detection using Sentiment Encoding and LSTM with Self-Attention
- Authors: Pouya Shaeri, Ali Katanforoush,
- Abstract summary: We propose a semi-supervised self-learning method in which a sentiment analysis is acquired by some state-of-the-art pretrained models.
Our learning model is trained in a semi-supervised fashion and incorporates LSTM with self-attention layers.
We benchmark our model on a dataset with 20,000 news content along with their feedback, which shows better performance in precision, recall, and measures compared to competitive methods in fake news detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Micro-blogs and cyber-space social networks are the main communication mediums to receive and share news nowadays. As a side effect, however, the networks can disseminate fake news that harms individuals and the society. Several methods have been developed to detect fake news, but the majority require large sets of manually labeled data to attain the application-level accuracy. Due to the strict privacy policies, the required data are often inaccessible or limited to some specific topics. On the other side, quite diverse and abundant unlabeled data on social media suggests that with a few labeled data, the problem of detecting fake news could be tackled via semi-supervised learning. Here, we propose a semi-supervised self-learning method in which a sentiment analysis is acquired by some state-of-the-art pretrained models. Our learning model is trained in a semi-supervised fashion and incorporates LSTM with self-attention layers. We benchmark our model on a dataset with 20,000 news content along with their feedback, which shows better performance in precision, recall, and measures compared to competitive methods in fake news detection.
Related papers
- Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information.
To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles.
Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance.
arXiv Detail & Related papers (2023-05-23T16:40:07Z) - It's All in the Embedding! Fake News Detection Using Document Embeddings [0.6091702876917281]
We propose a new approach that uses document embeddings to build multiple models that accurately label news articles as reliable or fake.
We also present a benchmark on different architectures that detect fake news using binary or multi-labeled classification.
arXiv Detail & Related papers (2023-04-16T13:30:06Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
This work introduces Multi-Policy Statement Checker (MPSC), a framework that automates fake news detection.
MPSC uses deep learning techniques to analyze a statement itself and its related news articles, predicting whether it is seemingly credible or suspicious.
arXiv Detail & Related papers (2022-06-01T21:25:21Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Misinformation Detection in Social Media Video Posts [0.4724825031148411]
Short-form video by social media platforms has become a critical challenge for social media providers.
We develop methods to detect misinformation in social media posts, exploiting modalities such as video and text.
We collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data.
arXiv Detail & Related papers (2022-02-15T20:14:54Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
This research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news.
We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms.
For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining.
arXiv Detail & Related papers (2020-07-24T05:42:29Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.