Near-Isotropic Sub-Ångstrom 3D Resolution Phase Contrast Imaging Achieved by End-to-End Ptychographic Electron Tomography
- URL: http://arxiv.org/abs/2407.19407v1
- Date: Sun, 28 Jul 2024 05:51:15 GMT
- Title: Near-Isotropic Sub-Ångstrom 3D Resolution Phase Contrast Imaging Achieved by End-to-End Ptychographic Electron Tomography
- Authors: Shengboy You, Andrey Romanov, Philipp Pelz,
- Abstract summary: Three-dimensional atomic resolution imaging using transmission electron microscopes is a unique capability that requires challenging experiments.
We propose and demonstrate an end-to-end approach to reconstructing the electrostatic potential volume of the sample directly from the 4D-STEM datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Three-dimensional atomic resolution imaging using transmission electron microscopes is a unique capability that requires challenging experiments. Linear electron tomography methods are limited by the missing wedge effect, requiring a high tilt range. Multislice ptychography can achieve deep sub-{\AA}ngstrom resolution in the transverse direction, but the depth resolution is limited to 2 to 3 nanometers. In this paper, we propose and demonstrate an end-to-end approach to reconstructing the electrostatic potential volume of the sample directly from the 4D-STEM datasets. End-to-end multi-slice ptychographic tomography recovers several slices at each tomography tilt angle and compensates for the missing wedge effect. The algorithm is initially tested in simulation with a Pt@$\mathrm{Al_2O_3}$ core-shell nanoparticle, where both heavy and light atoms are recovered in 3D from an unaligned 4D-STEM tilt series with a restricted tilt range of 90 degrees. We also demonstrate the algorithm experimentally, recovering a Te nanoparticle with sub-{\AA}ngstrom resolution.
Related papers
- Complex-valued 3D atomic spectroscopy with Gaussian-assisted inline holography [5.608499944121466]
We develop a Gaussian-decomposition-assisted approach to inline holography, for single-shot, simultaneous measurements of absorption and phase-shift profiles.
The phase-angle readout is not only robust against transition saturation, but also insensitive to atom-number and optical-induced interaction-strength fluctuations.
We demonstrate single-shot 3D field sensing by measuring local light shifts to the atomic array with micrometer spatial resolution.
arXiv Detail & Related papers (2024-05-15T06:22:21Z) - Phase Guided Light Field for Spatial-Depth High Resolution 3D Imaging [36.208109063579066]
On 3D imaging, light field cameras typically are of single shot, and they heavily suffer from low spatial resolution and depth accuracy.
We propose a phase guided light field algorithm to significantly improve both the spatial and depth resolutions for off-the-shelf light field cameras.
arXiv Detail & Related papers (2023-11-17T15:08:15Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - Low dosage 3D volume fluorescence microscopy imaging using compressive
sensing [0.0]
We present a compressive sensing (CS) based approach to fully reconstruct 3D volumes with the same signal-to-noise ratio (SNR) with less than half of the excitation dosage.
We demonstrate our technique by capturing a 3D volume of the RFP labeled neurons in the zebrafish embryo spinal cord with the axial sampling of 0.1um using a confocal microscope.
The developed CS-based methodology in this work can be easily applied to other deep imaging modalities such as two-photon and light-sheet microscopy, where reducing sample photo-toxicity is a critical challenge.
arXiv Detail & Related papers (2022-01-03T18:44:50Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
We propose the first minimal solutions for estimating the semi-generalized homography given a perspective and a generalized camera.
The proposed solvers are stable and efficient as demonstrated by a number of synthetic and real-world experiments.
arXiv Detail & Related papers (2021-03-11T08:56:24Z) - Single-molecule orientation localization microscopy I: fundamental
limits [0.0]
We adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision.
We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions.
Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks.
arXiv Detail & Related papers (2020-10-08T15:27:49Z) - Multi-view polarimetric scattering cloud tomography and retrieval of
droplet size [13.190581566723917]
Tomography aims to recover a three-dimensional (3D) density map of a medium or an object.
We define and derive tomography of cloud droplet distributions via passive remote sensing.
arXiv Detail & Related papers (2020-05-22T23:39:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.