Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models
- URL: http://arxiv.org/abs/2407.19564v1
- Date: Sun, 28 Jul 2024 19:18:59 GMT
- Title: Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models
- Authors: Jifeng Wang, Kaouther Messaoud, Yuejiang Liu, Juergen Gall, Alexandre Alahi,
- Abstract summary: Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
- Score: 68.23649978697027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in motion forecasting has been substantially driven by self-supervised pre-training. However, adapting pre-trained models for specific downstream tasks, especially motion prediction, through extensive fine-tuning is often inefficient. This inefficiency arises because motion prediction closely aligns with the masked pre-training tasks, and traditional full fine-tuning methods fail to fully leverage this alignment. To address this, we introduce Forecast-PEFT, a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters. This approach not only preserves the pre-learned representations but also significantly reduces the number of parameters that need retraining, thereby enhancing efficiency. This tailored strategy, supplemented by our method's capability to efficiently adapt to different datasets, enhances model efficiency and ensures robust performance across datasets without the need for extensive retraining. Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks, achieving higher accuracy with only 17% of the trainable parameters typically required. Moreover, our comprehensive adaptation, Forecast-FT, further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods. Code will be available at https://github.com/csjfwang/Forecast-PEFT.
Related papers
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization [28.977757627384165]
Domain Domain (DG) aims to avoid the performance degradation of the model when the distribution shift between the limited training data and unseen test data occurs.
Recently, foundation models with enormous parameters have been pre-trained with huge datasets, demonstrating strong generalization ability.
Our framework achieves SOTA performance on five DG benchmarks, while only requiring training a small number of parameters without adding additional testing cost.
arXiv Detail & Related papers (2024-07-21T07:50:49Z) - Low-rank Attention Side-Tuning for Parameter-Efficient Fine-Tuning [19.17362588650503]
Low-rank Attention Side-Tuning (LAST) trains a side-network composed of only low-rank self-attention modules.
We show LAST can be highly parallel across multiple optimization objectives, making it very efficient in downstream task adaptation.
arXiv Detail & Related papers (2024-02-06T14:03:15Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.