Sharp Bounds for Poly-GNNs and the Effect of Graph Noise
- URL: http://arxiv.org/abs/2407.19567v1
- Date: Sun, 28 Jul 2024 19:23:56 GMT
- Title: Sharp Bounds for Poly-GNNs and the Effect of Graph Noise
- Authors: Luciano Vinas, Arash A. Amini,
- Abstract summary: We investigate the classification performance of graph neural networks with graph-polynomial features, poly-GNNs.
Our analysis highlights and quantifies the impact of graph noise'' in deep GNNs.
Our analysis also reveals subtle differences between even and odd-layered GNNs in how the feature noise propagates.
- Score: 12.108529628556944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the classification performance of graph neural networks with graph-polynomial features, poly-GNNs, on the problem of semi-supervised node classification. We analyze poly-GNNs under a general contextual stochastic block model (CSBM) by providing a sharp characterization of the rate of separation between classes in their output node representations. A question of interest is whether this rate depends on the depth of the network $k$, i.e., whether deeper networks can achieve a faster separation? We provide a negative answer to this question: for a sufficiently large graph, a depth $k > 1$ poly-GNN exhibits the same rate of separation as a depth $k=1$ counterpart. Our analysis highlights and quantifies the impact of ``graph noise'' in deep GNNs and shows how noise in the graph structure can dominate other sources of signal in the graph, negating any benefit further aggregation provides. Our analysis also reveals subtle differences between even and odd-layered GNNs in how the feature noise propagates.
Related papers
- Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
We propose a novel and flexible truss-based graph sparsification model that prunes edges from dense regions of the graph.
We then utilize our sparsification model in the state-of-the-art baseline GNNs and pooling models, such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL, DMonPool, and AdamGNN.
arXiv Detail & Related papers (2024-07-16T17:21:36Z) - SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
Graph Neural Network (GNN) with the main idea of encoding graph structure information of graphs by propagation and aggregation has developed rapidly.
It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs.
For the phenomenon of performance degradation in deep GNNs, we propose a new perspective.
arXiv Detail & Related papers (2024-07-03T02:40:39Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - A Non-Asymptotic Analysis of Oversmoothing in Graph Neural Networks [33.35609077417775]
We characterize the mechanism behind the phenomenon via a non-asymptotic analysis.
We show that oversmoothing happens once the mixing effect starts to dominate the denoising effect.
Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth.
arXiv Detail & Related papers (2022-12-21T00:33:59Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - $p$-Laplacian Based Graph Neural Networks [27.747195341003263]
Graph networks (GNNs) have demonstrated superior performance for semi-supervised node classification on graphs.
We propose a new $p$-Laplacian based GNN model, termed as $p$GNN, whose message passing mechanism is derived from a discrete regularization framework.
We show that the new message passing mechanism works simultaneously as low-pass and high-pass filters, thus making $p$GNNs effective on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2021-11-14T13:16:28Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data.
We propose to enhance information propagation among GNN layers by combining heterogeneous aggregations.
We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks.
arXiv Detail & Related papers (2021-02-08T08:57:56Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.