Contextuality Helps Representation Learning for Generalized Category Discovery
- URL: http://arxiv.org/abs/2407.19752v1
- Date: Mon, 29 Jul 2024 07:30:41 GMT
- Title: Contextuality Helps Representation Learning for Generalized Category Discovery
- Authors: Tingzhang Luo, Mingxuan Du, Jiatao Shi, Xinxiang Chen, Bingchen Zhao, Shaoguang Huang,
- Abstract summary: This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality.
Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing contrastive learning.
The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories.
- Score: 5.885208652383516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality to enhance the identification and classification of categories in unlabeled datasets. Drawing inspiration from human cognition's ability to recognize objects within their context, we propose a dual-context based method. Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing prototypical contrastive learning based on category prototypes. The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories, which better deals with the real-world datasets. Different from the traditional semi-supervised and novel category discovery techniques, our model focuses on a more realistic and challenging scenario where both known and novel categories are present in the unlabeled data. Extensive experimental results on several benchmark data sets demonstrate that the proposed model outperforms the state-of-the-art. Code is available at: https://github.com/Clarence-CV/Contexuality-GCD
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - Textual Knowledge Matters: Cross-Modality Co-Teaching for Generalized
Visual Class Discovery [69.91441987063307]
Generalized Category Discovery (GCD) aims to cluster unlabeled data from both known and unknown categories.
Current GCD methods rely on only visual cues, which neglect the multi-modality perceptive nature of human cognitive processes in discovering novel visual categories.
We propose a two-phase TextGCD framework to accomplish multi-modality GCD by exploiting powerful Visual-Language Models.
arXiv Detail & Related papers (2024-03-12T07:06:50Z) - Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models [64.24227572048075]
We propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models.
Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects.
arXiv Detail & Related papers (2023-08-22T04:24:45Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) setting aims to categorize unlabeled training data coming from known and novel classes.
We propose Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem.
Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts.
arXiv Detail & Related papers (2022-12-11T20:06:14Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images.
Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-08-03T08:03:12Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections.
We propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training.
We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
arXiv Detail & Related papers (2022-08-01T16:34:33Z) - Class-incremental Novel Class Discovery [76.35226130521758]
We study the new task of class-incremental Novel Class Discovery (class-iNCD)
We propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes.
Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-18T13:49:27Z) - Novel Visual Category Discovery with Dual Ranking Statistics and Mutual
Knowledge Distillation [16.357091285395285]
We tackle the problem of grouping unlabelled images from new classes into different semantic partitions.
This is a more realistic and challenging setting than conventional semi-supervised learning.
We propose a two-branch learning framework for this problem, with one branch focusing on local part-level information and the other branch focusing on overall characteristics.
arXiv Detail & Related papers (2021-07-07T17:14:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.