Causal Understanding For Video Question Answering
- URL: http://arxiv.org/abs/2407.20257v1
- Date: Tue, 23 Jul 2024 06:32:46 GMT
- Title: Causal Understanding For Video Question Answering
- Authors: Bhanu Prakash Reddy Guda, Tanmay Kulkarni, Adithya Sampath, Swarnashree Mysore Sathyendra,
- Abstract summary: Video Question Answering is a challenging task, which requires the model to reason over multiple frames and understand the interaction between different objects to answer questions based on the context provided within the video.
Previous approaches leverage either sub-sampled information or causal intervention techniques along with complete video features to tackle the NExT-QA task.
In this work we elicit the limitations of these approaches and propose solutions along four novel directions of improvements on the NExT-QA dataset.
- Score: 2.749898166276854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video Question Answering is a challenging task, which requires the model to reason over multiple frames and understand the interaction between different objects to answer questions based on the context provided within the video, especially in datasets like NExT-QA (Xiao et al., 2021a) which emphasize on causal and temporal questions. Previous approaches leverage either sub-sampled information or causal intervention techniques along with complete video features to tackle the NExT-QA task. In this work we elicit the limitations of these approaches and propose solutions along four novel directions of improvements on theNExT-QA dataset. Our approaches attempts to compensate for the shortcomings in the previous works by systematically attacking each of these problems by smartly sampling frames, explicitly encoding actions and creating interventions that challenge the understanding of the model. Overall, for both single-frame (+6.3%) and complete-video (+1.1%) based approaches, we obtain the state-of-the-art results on NExT-QA dataset.
Related papers
- ReasVQA: Advancing VideoQA with Imperfect Reasoning Process [38.4638171723351]
textbfReasVQA (Reasoning-enhanced Video Question Answering) is a novel approach that leverages reasoning processes generated by Multimodal Large Language Models (MLLMs) to improve the performance of VideoQA models.
We evaluate ReasVQA on three popular benchmarks, and our results establish new state-of-the-art performance with significant improvements of +2.9 on NExT-QA, +7.3 on STAR, and +5.9 on IntentQA.
arXiv Detail & Related papers (2025-01-23T10:35:22Z) - Admitting Ignorance Helps the Video Question Answering Models to Answer [82.22149677979189]
We argue that models often establish shortcuts, resulting in spurious correlations between questions and answers.
We propose a novel training framework in which the model is compelled to acknowledge its ignorance when presented with an intervened question.
In practice, we integrate a state-of-the-art model into our framework to validate its effectiveness.
arXiv Detail & Related papers (2025-01-15T12:44:52Z) - Foundation Models and Adaptive Feature Selection: A Synergistic Approach to Video Question Answering [13.294004180200496]
We introduce Local-Global Question Aware Video Embedding (LGQAVE), which incorporates three major innovations to integrate multi-modal knowledge better.
LGQAVE moves beyond traditional ad-hoc frame sampling by utilizing a cross-attention mechanism that precisely identifies the most relevant frames concerning the questions.
An additional cross-attention module integrates these local and global embeddings to generate the final video embeddings, which a language model uses to generate answers.
arXiv Detail & Related papers (2024-12-12T12:39:07Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - Empowering Large Language Model for Continual Video Question Answering with Collaborative Prompting [15.161997580529075]
This paper explores the novel challenge of VideoQA within a continual learning framework.
We propose Collaborative Prompting (ColPro), which integrates specific question constraint prompting, knowledge acquisition prompting, and visual temporal awareness prompting.
Experimental results on the NExT-QA and DramaQA datasets show that ColPro achieves superior performance compared to existing approaches.
arXiv Detail & Related papers (2024-10-01T15:07:07Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
We present a novel dataset and benchmark, CinePile, specifically designed for authentic long-form video understanding.
Our comprehensive dataset comprises 305,000 multiple-choice questions (MCQs), covering various visual and multimodal aspects.
We fine-tuned open-source Video-LLMs on the training split and evaluated both open-source and proprietary video-centric LLMs on the test split of our dataset.
arXiv Detail & Related papers (2024-05-14T17:59:02Z) - Grounded Question-Answering in Long Egocentric Videos [39.281013854331285]
open-ended question-answering (QA) in long, egocentric videos allows individuals or robots to inquire about their own past visual experiences.
This task presents unique challenges, including the complexity of temporally grounding queries within extensive video content.
Our proposed approach tackles these challenges by (i) integrating query grounding and answering within a unified model to reduce error propagation.
arXiv Detail & Related papers (2023-12-11T16:31:55Z) - RTQ: Rethinking Video-language Understanding Based on Image-text Model [55.278942477715084]
Video-language understanding presents unique challenges due to the inclusion of highly complex semantic details.
We propose a novel framework called RTQ, which addresses these challenges simultaneously.
Our model demonstrates outstanding performance even in the absence of video-language pre-training.
arXiv Detail & Related papers (2023-12-01T04:51:01Z) - Learning Situation Hyper-Graphs for Video Question Answering [95.18071873415556]
We propose an architecture for Video Question Answering (VQA) that enables answering questions related to video content by predicting situation hyper-graphs.
We train a situation hyper-graph decoder to implicitly identify graph representations with actions and object/human-object relationships from the input video clip.
Our results show that learning the underlying situation hyper-graphs helps the system to significantly improve its performance for novel challenges of video question-answering tasks.
arXiv Detail & Related papers (2023-04-18T01:23:11Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark.
We set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension.
We find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning.
arXiv Detail & Related papers (2021-05-18T04:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.