Invariant deep neural networks under the finite group for solving partial differential equations
- URL: http://arxiv.org/abs/2407.20560v1
- Date: Tue, 30 Jul 2024 05:28:10 GMT
- Title: Invariant deep neural networks under the finite group for solving partial differential equations
- Authors: Zhi-Yong Zhang, Jie-Ying Li, Lei-Lei Guo,
- Abstract summary: We design a symmetry-enhanced deep neural network (sDNN) which makes the architecture of neural networks invariant under the finite group.
Numerical results show that the sDNN has strong predicted abilities in and beyond the sampling domain.
- Score: 1.4916944282865694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing physics-informed neural networks (PINN) to solve partial differential equations (PDEs) becomes a hot issue and also shows its great powers, but still suffers from the dilemmas of limited predicted accuracy in the sampling domain and poor prediction ability beyond the sampling domain which are usually mitigated by adding the physical properties of PDEs into the loss function or by employing smart techniques to change the form of loss function for special PDEs. In this paper, we design a symmetry-enhanced deep neural network (sDNN) which makes the architecture of neural networks invariant under the finite group through expanding the dimensions of weight matrixes and bias vectors in each hidden layers by the order of finite group if the group has matrix representations, otherwise extending the set of input data and the hidden layers except for the first hidden layer by the order of finite group. However, the total number of training parameters is only about one over the order of finite group of the original PINN size due to the symmetric architecture of sDNN. Furthermore, we give special forms of weight matrixes and bias vectors of sDNN, and rigorously prove that the architecture itself is invariant under the finite group and the sDNN has the universal approximation ability to learn the function keeping the finite group. Numerical results show that the sDNN has strong predicted abilities in and beyond the sampling domain and performs far better than the vanilla PINN with fewer training points and simpler architecture.
Related papers
- First Order System Least Squares Neural Networks [0.0]
We numerically solve PDEs on bounded, polytopal domains in euclidean spaces by deep neural networks.
An adaptive neural network growth strategy is proposed which, assuming exact numerical minimization of the LSQ loss functional, yields sequences of neural networks with realizations that converge rate-optimally to the exact solution of the first order system LSQ formulation.
arXiv Detail & Related papers (2024-09-30T13:04:35Z) - Functional Tensor Decompositions for Physics-Informed Neural Networks [8.66932181641177]
Physics-Informed Neural Networks (PINNs) have shown continuous and increasing promise in approximating partial differential equations (PDEs)
We propose a generalized PINN version of the classical variable separable method.
Our methodology significantly enhances the performance of PINNs, as evidenced by improved results on complex high-dimensional PDEs.
arXiv Detail & Related papers (2024-08-23T14:24:43Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
We compare deeper neural networks (DeNNs) with a flexible number of layers and wider neural networks (WeNNs) with limited hidden layers.
We find that a higher number of parameters tends to favor WeNNs, while an increased number of sample points and greater regularity in the loss function lean towards the adoption of DeNNs.
arXiv Detail & Related papers (2024-01-31T20:10:10Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
We propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD)
RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training.
We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters.
arXiv Detail & Related papers (2022-12-06T10:08:02Z) - Convergence analysis of unsupervised Legendre-Galerkin neural networks
for linear second-order elliptic PDEs [0.8594140167290099]
We perform the convergence analysis of unsupervised Legendre--Galerkin neural networks (ULGNet)
ULGNet is a deep-learning-based numerical method for solving partial differential equations (PDEs)
arXiv Detail & Related papers (2022-11-16T13:31:03Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible neural networks (INNs) are neural network architectures with invertibility by design.
Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning.
arXiv Detail & Related papers (2022-04-15T10:45:26Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.