MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions
- URL: http://arxiv.org/abs/2407.20962v2
- Date: Tue, 6 Aug 2024 12:25:48 GMT
- Title: MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions
- Authors: Xiaowei Chi, Yatian Wang, Aosong Cheng, Pengjun Fang, Zeyue Tian, Yingqing He, Zhaoyang Liu, Xingqun Qi, Jiahao Pan, Rongyu Zhang, Mengfei Li, Ruibin Yuan, Yanbing Jiang, Wei Xue, Wenhan Luo, Qifeng Chen, Shanghang Zhang, Qifeng Liu, Yike Guo,
- Abstract summary: We present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions.
We propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos.
Our dataset potentially paves the path for fine-grained large multimodal-language model training.
- Score: 69.9122231800796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Massive multi-modality datasets play a significant role in facilitating the success of large video-language models. However, current video-language datasets primarily provide text descriptions for visual frames, considering audio to be weakly related information. They usually overlook exploring the potential of inherent audio-visual correlation, leading to monotonous annotation within each modality instead of comprehensive and precise descriptions. Such ignorance results in the difficulty of multiple cross-modality studies. To fulfill this gap, we present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions, and 2M high-quality clips with multimodal captions. Trailers preview full-length video works and integrate context, visual frames, and background music. In particular, the trailer has two main advantages: (1) the topics are diverse, and the content characters are of various types, e.g., film, news, and gaming. (2) the corresponding background music is custom-designed, making it more coherent with the visual context. Upon these insights, we propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos. Here, to ensure the caption retains music perspective while preserving the authority of visual context, we leverage the advanced LLM to merge all annotations adaptively. In this fashion, our MMtrail dataset potentially paves the path for fine-grained large multimodal-language model training. In experiments, we provide evaluation metrics and benchmark results on our dataset, demonstrating the high quality of our annotation and its effectiveness for model training.
Related papers
- Fine-grained Audio-Visual Joint Representations for Multimodal Large
Language Models [25.660343393359565]
This paper proposes a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal large language models (LLM)
FAVOR simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level.
An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
arXiv Detail & Related papers (2023-10-09T17:00:20Z) - VAST: A Vision-Audio-Subtitle-Text Omni-Modality Foundation Model and
Dataset [17.927825332032477]
We explore an automatically generated large-scale omni-modality video caption dataset called VAST-27M.
We first collect 27 million open-domain video clips and separately train a vision and an audio captioner to generate vision and audio captions.
We employ an off-the-shelf Large Language Model (LLM) to integrate the generated captions, together with subtitles and instructional prompts into omni-modality captions.
arXiv Detail & Related papers (2023-05-29T14:34:50Z) - VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and
Dataset [53.46019570679092]
We propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation.
VALOR jointly models relationships of vision, audio and language in an end-to-end manner.
It achieves new state-of-the-art performances on series of public cross-modality benchmarks.
arXiv Detail & Related papers (2023-04-17T15:08:15Z) - M2HF: Multi-level Multi-modal Hybrid Fusion for Text-Video Retrieval [34.343617836027725]
We propose a multi-level multi-modal hybrid fusion network to explore comprehensive interactions between text queries and each modality content in videos.
Our framework provides two kinds of training strategies, including an ensemble manner and an end-to-end manner.
arXiv Detail & Related papers (2022-08-16T10:51:37Z) - Boosting Video Representation Learning with Multi-Faceted Integration [112.66127428372089]
Video content is multifaceted, consisting of objects, scenes, interactions or actions.
Existing datasets mostly label only one of the facets for model training, resulting in the video representation that biases to only one facet depending on the training dataset.
We propose a new learning framework, MUlti-Faceted Integration (MUFI), to aggregate facets from different datasets for learning a representation that could reflect the full spectrum of video content.
arXiv Detail & Related papers (2022-01-11T16:14:23Z) - Spoken Moments: Learning Joint Audio-Visual Representations from Video
Descriptions [75.77044856100349]
We present the Spoken Moments dataset of 500k spoken captions each attributed to a unique short video depicting a broad range of different events.
We show that our AMM approach consistently improves our results and that models trained on our Spoken Moments dataset generalize better than those trained on other video-caption datasets.
arXiv Detail & Related papers (2021-05-10T16:30:46Z) - QuerYD: A video dataset with high-quality text and audio narrations [85.6468286746623]
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video.
A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description.
The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos.
arXiv Detail & Related papers (2020-11-22T17:33:44Z) - Video Understanding as Machine Translation [53.59298393079866]
We tackle a wide variety of downstream video understanding tasks by means of a single unified framework.
We report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT)
arXiv Detail & Related papers (2020-06-12T14:07:04Z) - Multi-modal Dense Video Captioning [18.592384822257948]
We present a new dense video captioning approach that is able to utilize any number of modalities for event description.
We show how audio and speech modalities may improve a dense video captioning model.
arXiv Detail & Related papers (2020-03-17T15:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.