Reinforcement Learning in High-frequency Market Making
- URL: http://arxiv.org/abs/2407.21025v2
- Date: Mon, 12 Aug 2024 16:51:02 GMT
- Title: Reinforcement Learning in High-frequency Market Making
- Authors: Yuheng Zheng, Zihan Ding,
- Abstract summary: This paper establishes a new and comprehensive theoretical analysis for the application of reinforcement learning (RL) in high-frequency market making.
We bridge the modern RL theory and the continuous-time statistical models in high-frequency financial economics.
- Score: 7.740207107300432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper establishes a new and comprehensive theoretical analysis for the application of reinforcement learning (RL) in high-frequency market making. We bridge the modern RL theory and the continuous-time statistical models in high-frequency financial economics. Different with most existing literature on methodological research about developing various RL methods for market making problem, our work is a pilot to provide the theoretical analysis. We target the effects of sampling frequency, and find an interesting tradeoff between error and complexity of RL algorithm when tweaking the values of the time increment $\Delta$ $-$ as $\Delta$ becomes smaller, the error will be smaller but the complexity will be larger. We also study the two-player case under the general-sum game framework and establish the convergence of Nash equilibrium to the continuous-time game equilibrium as $\Delta\rightarrow0$. The Nash Q-learning algorithm, which is an online multi-agent RL method, is applied to solve the equilibrium. Our theories are not only useful for practitioners to choose the sampling frequency, but also very general and applicable to other high-frequency financial decision making problems, e.g., optimal executions, as long as the time-discretization of a continuous-time markov decision process is adopted. Monte Carlo simulation evidence support all of our theories.
Related papers
- Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
This paper is the first to propose considering the RRL problems within the positional differential game theory.
Namely, we prove that under Isaacs's condition, the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations.
We present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
arXiv Detail & Related papers (2024-05-03T12:21:43Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - Using Experience Classification for Training Non-Markovian Tasks [11.267797018727402]
Non-Markovian tasks are frequently applied in practical applications such as autonomous driving, financial trading, and medical diagnosis.
We propose a novel RL approach to achieve non-Markovian rewards expressed in temporal logic$_f$.
arXiv Detail & Related papers (2023-10-18T03:00:59Z) - Stock Trading Optimization through Model-based Reinforcement Learning
with Resistance Support Relative Strength [4.322320095367326]
We design a new approach that leverages resistance and support (RS) level as regularization terms for action in model-based reinforcement learning (MBRL) algorithms.
Our proposed method even resists big drop (less maximum drawdown) during COVID-19 pandemic period when the financial market got unpredictable crisis.
arXiv Detail & Related papers (2022-05-30T12:36:48Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
In practical applications of RL, it is expensive to observe state transitions from the environment.
We propose an acquisition function that quantifies how much information a state-action pair would provide about the optimal solution to a Markov decision process.
arXiv Detail & Related papers (2021-12-09T23:13:57Z) - Recent Advances in Reinforcement Learning in Finance [3.0079490585515343]
The rapid changes in the finance industry due to the increasing amount of data have revolutionized techniques on data processing and data analysis.
New developments from reinforcement learning (RL) are able to make full use of the large amount of financial data.
arXiv Detail & Related papers (2021-12-08T19:55:26Z) - Entropy Regularized Reinforcement Learning Using Large Deviation Theory [3.058685580689605]
In this paper, we establish a mapping between entropy-regularized RL and research in non-equilibrium statistical mechanics.
We apply approaches from large deviation theory to derive exact analytical results for the optimal policy and optimal dynamics.
The results lead to a novel analytical and computational framework for entropy-regularized RL which is validated by simulations.
arXiv Detail & Related papers (2021-06-07T19:42:06Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
reinforcement learning can be used to solve scheduling problems.
Existing studies rely on (sometimes) complex simulations for which the code is unavailable.
There is a vast array of RL designs to choose from.
standardization of model descriptions - both production setup and RL design - and validation scheme are a prerequisite.
arXiv Detail & Related papers (2021-04-16T16:07:10Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.