Advancing Chart Question Answering with Robust Chart Component Recognition
- URL: http://arxiv.org/abs/2407.21038v1
- Date: Fri, 19 Jul 2024 20:55:06 GMT
- Title: Advancing Chart Question Answering with Robust Chart Component Recognition
- Authors: Hanwen Zheng, Sijia Wang, Chris Thomas, Lifu Huang,
- Abstract summary: We introduce a unified framework that enhances chart component recognition by accurately identifying and classifying components such as bars, lines, pies, titles, legends, and axes.
We also propose a novel Question-guided Deformable Co-Attention mechanism, which fuses chart features encoded by Chartformer with the given question, leveraging the question's guidance to ground the correct answer.
- Score: 18.207819321127182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chart comprehension presents significant challenges for machine learning models due to the diverse and intricate shapes of charts. Existing multimodal methods often overlook these visual features or fail to integrate them effectively for chart question answering (ChartQA). To address this, we introduce Chartformer, a unified framework that enhances chart component recognition by accurately identifying and classifying components such as bars, lines, pies, titles, legends, and axes. Additionally, we propose a novel Question-guided Deformable Co-Attention (QDCAt) mechanism, which fuses chart features encoded by Chartformer with the given question, leveraging the question's guidance to ground the correct answer. Extensive experiments demonstrate that the proposed approaches significantly outperform baseline models in chart component recognition and ChartQA tasks, achieving improvements of 3.2% in mAP and 15.4% in accuracy, respectively. These results underscore the robustness of our solution for detailed visual data interpretation across various applications.
Related papers
- ChartKG: A Knowledge-Graph-Based Representation for Chart Images [9.781118203308438]
We propose a knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them.
It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts.
We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts.
arXiv Detail & Related papers (2024-10-13T07:38:44Z) - VProChart: Answering Chart Question through Visual Perception Alignment Agent and Programmatic Solution Reasoning [13.011899331656018]
VProChart is a novel framework designed to address the challenges of Chart Question Answering (CQA)
It integrates a lightweight Visual Perception Alignment Agent (VPAgent) and a Programmatic Solution Reasoning approach.
VProChart significantly outperforms existing methods, highlighting its capability in understanding and reasoning with charts.
arXiv Detail & Related papers (2024-09-03T07:19:49Z) - MSG-Chart: Multimodal Scene Graph for ChartQA [11.828192162922436]
Automatic Chart Question Answering (ChartQA) is challenging due to the complex distribution of chart elements with patterns of the underlying data not explicitly displayed in charts.
We design a joint multimodal scene graph for charts to explicitly represent the relationships between chart elements and their patterns.
Our proposed multimodal scene graph includes a visual graph and a textual graph to jointly capture the structural and semantical knowledge from the chart.
arXiv Detail & Related papers (2024-08-09T04:11:23Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.
We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
We present TinyChart, an efficient MLLM for chart understanding with only 3B parameters.
TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module.
arXiv Detail & Related papers (2024-04-25T14:23:24Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistant is a vision-language model for universal chart comprehension and reasoning.
It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text.
Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and Chartllama method.
arXiv Detail & Related papers (2024-01-04T17:51:48Z) - StructChart: Perception, Structuring, Reasoning for Visual Chart
Understanding [58.38480335579541]
Current chart-related tasks focus on either chart perception which refers to extracting information from the visual charts, or performing reasoning given the extracted data.
In this paper, we aim to establish a unified and label-efficient learning paradigm for joint perception and reasoning tasks.
Experiments are conducted on various chart-related tasks, demonstrating the effectiveness and promising potential for a unified chart perception-reasoning paradigm.
arXiv Detail & Related papers (2023-09-20T12:51:13Z) - Enhanced Chart Understanding in Vision and Language Task via Cross-modal
Pre-training on Plot Table Pairs [71.55796212450055]
We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs.
Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP)
arXiv Detail & Related papers (2023-05-29T22:29:03Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
We present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks.
Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks.
Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model.
arXiv Detail & Related papers (2023-04-05T00:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.