Learning Optimal Signal Temporal Logic Decision Trees for Classification: A Max-Flow MILP Formulation
- URL: http://arxiv.org/abs/2407.21090v2
- Date: Wed, 14 Aug 2024 17:35:21 GMT
- Title: Learning Optimal Signal Temporal Logic Decision Trees for Classification: A Max-Flow MILP Formulation
- Authors: Kaier Liang, Gustavo A. Cardona, Disha Kamale, Cristian-Ioan Vasile,
- Abstract summary: This paper presents a novel framework for inferring timed temporal logic properties from data.
We formulate the inference process as a mixed integer linear programming optimization problem.
Applying a max-flow algorithm on the resultant tree transforms the problem into a global optimization challenge.
We conduct three case studies involving two-class, multi-class, and complex formula classification scenarios.
- Score: 5.924780594614676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel framework for inferring timed temporal logic properties from data. The dataset comprises pairs of finite-time system traces and corresponding labels, denoting whether the traces demonstrate specific desired behaviors, e.g. whether the ship follows a safe route or not. Our proposed approach leverages decision-tree-based methods to infer Signal Temporal Logic classifiers using primitive formulae. We formulate the inference process as a mixed integer linear programming optimization problem, recursively generating constraints to determine both data classification and tree structure. Applying a max-flow algorithm on the resultant tree transforms the problem into a global optimization challenge, leading to improved classification rates compared to prior methodologies. Moreover, we introduce a technique to reduce the number of constraints by exploiting the symmetry inherent in STL primitives, which enhances the algorithm's time performance and interpretability. To assess our algorithm's effectiveness and classification performance, we conduct three case studies involving two-class, multi-class, and complex formula classification scenarios.
Related papers
- Towards Fast Algorithms for the Preference Consistency Problem Based on Hierarchical Models [4.007697401483925]
We construct and compare algorithmic approaches to solve the Consistency Problem for preference statements based on hierarchical models.
An instance is consistent if there exists an hierarchical model on the evaluation functions that induces an order relation on the alternatives.
We develop three approaches to solve this decision problem.
arXiv Detail & Related papers (2024-10-31T13:48:46Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Optimizing NOTEARS Objectives via Topological Swaps [41.18829644248979]
In this paper, we develop an effective method for a set of candidate algorithms.
At the inner level, given a subject, we utilize off-the-the-art constraints.
The proposed method significantly improves the score of other algorithms.
arXiv Detail & Related papers (2023-05-26T21:49:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
We consider first- and second-order techniques to address continuous optimization problems in machine learning.
In the first-order case, we propose a framework of transition from semi-deterministic to quadratic regularization methods.
In the second-order case, we propose a novel first-order algorithm with adaptive sampling and adaptive step size.
arXiv Detail & Related papers (2021-11-29T18:10:00Z) - Classification of Time-Series Data Using Boosted Decision Trees [3.4606842570088094]
Time-series data classification is central to the analysis and control of autonomous systems, such as robots and self-driving cars.
Current frameworks are either inaccurate for real-world applications, such as autonomous driving, or they generate long and complicated formulae that lack interpretability.
We introduce a novel learning method, called Boosted Concise Decision Trees (BCDTs), to generate binary classifiers that are represented as Signal Temporal Logic (STL) formulae.
arXiv Detail & Related papers (2021-10-01T15:28:26Z) - Uncertainty-Aware Signal Temporal logic [21.626420725274208]
Existing temporal logic inference methods mostly neglect uncertainties in the data.
We propose two uncertainty-aware signal temporal logic (STL) inference approaches to classify the undesired behaviors and desired behaviors of a system.
arXiv Detail & Related papers (2021-05-24T21:26:57Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.