Amelia: A Large Model and Dataset for Airport Surface Movement Forecasting
- URL: http://arxiv.org/abs/2407.21185v1
- Date: Tue, 30 Jul 2024 20:50:48 GMT
- Title: Amelia: A Large Model and Dataset for Airport Surface Movement Forecasting
- Authors: Ingrid Navarro, Pablo Ortega-Kral, Jay Patrikar, Haichuan Wang, Zelin Ye, Jong Hoon Park, Jean Oh, Sebastian Scherer,
- Abstract summary: Amelia-48 is a large surface movement dataset collected using the System Wide Information Management (SWIM) Surface Movement Event Service (SMES)
Amelia-TF is a transformer-based next-token-prediction large multi-agent multi-airport trajectory forecasting model trained on 292 days.
It is validated on unseen airports with experiments showcasing the different prediction horizon lengths, ego-agent selection strategies, and training recipes.
- Score: 12.684598713362007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing demand for air travel requires technological advancements in air traffic management as well as mechanisms for monitoring and ensuring safe and efficient operations. In terminal airspaces, predictive models of future movements and traffic flows can help with proactive planning and efficient coordination; however, varying airport topologies, and interactions with other agents, among other factors, make accurate predictions challenging. Data-driven predictive models have shown promise for handling numerous variables to enable various downstream tasks, including collision risk assessment, taxi-out time prediction, departure metering, and emission estimations. While data-driven methods have shown improvements in these tasks, prior works lack large-scale curated surface movement datasets within the public domain and the development of generalizable trajectory forecasting models. In response to this, we propose two contributions: (1) Amelia-48, a large surface movement dataset collected using the System Wide Information Management (SWIM) Surface Movement Event Service (SMES). With data collection beginning in Dec 2022, the dataset provides more than a year's worth of SMES data (~30TB) and covers 48 airports within the US National Airspace System. In addition to releasing this data in the public domain, we also provide post-processing scripts and associated airport maps to enable research in the forecasting domain and beyond. (2) Amelia-TF model, a transformer-based next-token-prediction large multi-agent multi-airport trajectory forecasting model trained on 292 days or 9.4 billion tokens of position data encompassing 10 different airports with varying topology. The open-sourced model is validated on unseen airports with experiments showcasing the different prediction horizon lengths, ego-agent selection strategies, and training recipes to demonstrate the generalization capabilities.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Multi-Agent Based Transfer Learning for Data-Driven Air Traffic
Applications [1.588400000775528]
This paper proposes a Multi-Agent Bidirectional Representations from Transformers (MA-BERT) model that fully considers the multi-agent characteristic of the ATM system and learns air traffic controllers' decisions.
By pre-training the MA-BERT on a large dataset from a major airport and then fine-tuning it to other airports and specific air traffic applications, a large amount of the total training time can be saved.
arXiv Detail & Related papers (2024-01-23T22:21:07Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Big data-driven prediction of airspace congestion [40.02298833349518]
We present a novel data management and prediction system that accurately predicts aircraft counts for a particular airspace sector within the National Airspace System (NAS)
In the preprocessing step, the system processes the incoming raw data, reduces it to a compact size, and stores it in a compact database.
In the prediction step, the system learns from historical trajectories and uses their segments to collect key features such as sector boundary crossings, weather parameters, and other air traffic data.
arXiv Detail & Related papers (2023-10-13T09:57:22Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - Flight Demand Forecasting with Transformers [0.0]
This research strives to improve prediction accuracy from two key aspects: better data sources and robust forecasting algorithms.
Inspired by the success of transformers, we adopted this technique to predict strategic flight departure demand in multiple horizons.
Case studies show that TFTs can perform better than traditional forecasting methods by large margins.
arXiv Detail & Related papers (2021-11-04T22:00:12Z) - Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset [84.3946567650148]
With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways.
We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent.
We introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models.
arXiv Detail & Related papers (2021-04-20T17:19:05Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
We present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights.
The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages.
Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
arXiv Detail & Related papers (2021-03-20T18:37:06Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.