Big Cooperative Learning
- URL: http://arxiv.org/abs/2407.21319v1
- Date: Wed, 31 Jul 2024 03:59:14 GMT
- Title: Big Cooperative Learning
- Authors: Yulai Cong,
- Abstract summary: We show that the training of foundation models can be interpreted as a form of big cooperative learning.
We propose the BigLearn-GAN, which is a novel adversarially-trained foundation model with versatile data sampling capabilities.
- Score: 7.958840888809145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperation plays a pivotal role in the evolution of human intelligence; moreover, it also underlies the recent revolutionary advancement of artificial intelligence (AI) that is driven by foundation models. Specifically, we reveal that the training of foundation models can be interpreted as a form of big cooperative learning (\textit{abbr.} big learning), where massive learning individuals/tasks \emph{cooperate} to approach the unique essence of data from diverse perspectives of data prediction, leveraging a universal model. The presented big learning therefore unifies most training objectives of foundation models within a consistent framework, where their underlying assumptions are exposed simultaneously. We design tailored simulations to demonstrate the principle of big learning, based on which we provide learning-perspective justifications for the successes of foundation models, with interesting side-products. Furthermore, we reveal that big learning is a new dimension for upgrading conventional machine learning paradigms, valuable for endowing reinvigorations to associated applications; as an illustrative example, we propose the BigLearn-GAN, which is a novel adversarially-trained foundation model with versatile data sampling capabilities. Code is available at \texttt{https://github.com/YulaiCong/BigCooperativeLearning}.
Related papers
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
We study how to learn human-interpretable concepts from data.
Weaving together ideas from both fields, we show that concepts can be provably recovered from diverse data.
arXiv Detail & Related papers (2024-02-14T15:23:59Z) - Big Learning [15.733273085085763]
Big learning exploits the information inherent in its large-scale complete/incomplete training data.
Big learning is capable of delivering all joint/conditional/marginal data capabilities with one universal model.
Diverse experiments are carried out to validate the effectiveness of the presented big learning.
arXiv Detail & Related papers (2022-07-08T13:35:21Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.