Skeleton-Based Action Recognition with Spatial-Structural Graph Convolution
- URL: http://arxiv.org/abs/2407.21525v1
- Date: Wed, 31 Jul 2024 11:04:41 GMT
- Title: Skeleton-Based Action Recognition with Spatial-Structural Graph Convolution
- Authors: Jingyao Wang, Emmanuel Bergeret, Issam Falih,
- Abstract summary: We study the representation of skeleton data and the issue of over-smoothing in Graph Convolutional Network (GCN) based method.
We propose a two-stream graph convolution method called Spatial- Structural GCN (SpSt-GCN)
We evaluate our method on two large-scale datasets, i.e., NTU RGB+D and NTU RGB+D 120.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human Activity Recognition (HAR) is a field of study that focuses on identifying and classifying human activities. Skeleton-based Human Activity Recognition has received much attention in recent years, where Graph Convolutional Network (GCN) based method is widely used and has achieved remarkable results. However, the representation of skeleton data and the issue of over-smoothing in GCN still need to be studied. 1). Compared to central nodes, edge nodes can only aggregate limited neighbor information, and different edge nodes of the human body are always structurally related. However, the information from edge nodes is crucial for fine-grained activity recognition. 2). The Graph Convolutional Network suffers from a significant over-smoothing issue, causing nodes to become increasingly similar as the number of network layers increases. Based on these two ideas, we propose a two-stream graph convolution method called Spatial-Structural GCN (SpSt-GCN). Spatial GCN performs information aggregation based on the topological structure of the human body, and structural GCN performs differentiation based on the similarity of edge node sequences. The spatial connection is fixed, and the human skeleton naturally maintains this topology regardless of the actions performed by humans. However, the structural connection is dynamic and depends on the type of movement the human body is performing. Based on this idea, we also propose an entirely data-driven structural connection, which greatly increases flexibility. We evaluate our method on two large-scale datasets, i.e., NTU RGB+D and NTU RGB+D 120. The proposed method achieves good results while being efficient.
Related papers
- Learning Graph Filters for Structure-Function Coupling based Hub Node Identification [19.7242695744767]
Hub nodes are specialized nodes within a network that link distinct brain units corresponding to specialized functional processes.
We introduce a graph signal processing (GSP) based hub detection framework that utilizes both the structural connectivity and the functional activation to identify hub nodes.
arXiv Detail & Related papers (2024-10-22T20:33:16Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
We propose a new adaptive spatial attention layer that extends local attention map to global based on relative distance and relative angle information.
We design a new initial graph adjacency matrix that connects head, hands and feet, which shows visible improvement in terms of action recognition accuracy.
The proposed model is evaluated on two large-scale and challenging datasets in the field of human activities in daily life.
arXiv Detail & Related papers (2022-07-12T12:22:21Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Skeleton-based Hand-Gesture Recognition with Lightweight Graph
Convolutional Networks [14.924672048447338]
Graph convolutional networks (GCNs) aim at extending deep learning to arbitrary irregular domains, such as graphs.
We introduce a novel method that learns the topology of input graphs as a part of GCN design.
Experiments conducted on the challenging task of skeleton-based hand-gesture recognition show the high effectiveness of the learned GCNs.
arXiv Detail & Related papers (2021-04-09T09:06:53Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
We present Node2Grids, a flexible uncoupled training framework for embedding graph data into grid-like data.
By ranking each node's influence through degree, Node2Grids selects the most influential first-order as well as second-order neighbors with central node fusion information.
For further improving the efficiency of downstream tasks, a simple CNN-based neural network is employed to capture the significant information from the mapped grid-like data.
arXiv Detail & Related papers (2020-03-21T11:49:16Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
We study the relationship between LPA and GCN in terms of two aspects: feature/label smoothing and feature/label influence.
Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification.
Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models.
arXiv Detail & Related papers (2020-02-17T03:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.