Localized Gaussian Splatting Editing with Contextual Awareness
- URL: http://arxiv.org/abs/2408.00083v1
- Date: Wed, 31 Jul 2024 18:00:45 GMT
- Title: Localized Gaussian Splatting Editing with Contextual Awareness
- Authors: Hanyuan Xiao, Yingshu Chen, Huajian Huang, Haolin Xiong, Jing Yang, Pratusha Prasad, Yajie Zhao,
- Abstract summary: We introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation.
Inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting.
Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport.
- Score: 10.46087834880747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.
Related papers
- Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
We propose a novel image editing technique that enables 3D manipulations on single images.
Our method directly leverages powerful image diffusion models trained on a broad spectrum of text-image pairs.
Our method can generate high-quality 3D-aware image edits with large viewpoint transformations and high appearance and shape consistency with the input image.
arXiv Detail & Related papers (2024-03-18T06:18:59Z) - X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation [61.48050470095969]
X-Dreamer is a novel approach for high-quality text-to-3D content creation.
It bridges the gap between text-to-2D and text-to-3D synthesis.
arXiv Detail & Related papers (2023-11-30T07:23:00Z) - Directional Texture Editing for 3D Models [51.31499400557996]
ITEM3D is designed for automatic textbf3D object editing according to the text textbfInstructions.
Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation.
arXiv Detail & Related papers (2023-09-26T12:01:13Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging.
We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild.
We produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations.
arXiv Detail & Related papers (2023-06-07T17:47:50Z) - Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion
Prior [36.40582157854088]
In this work, we investigate the problem of creating high-fidelity 3D content from only a single image.
We leverage prior knowledge from a well-trained 2D diffusion model to act as 3D-aware supervision for 3D creation.
Our method presents the first attempt to achieve high-quality 3D creation from a single image for general objects and enables various applications such as text-to-3D creation and texture editing.
arXiv Detail & Related papers (2023-03-24T17:54:22Z) - Vox-E: Text-guided Voxel Editing of 3D Objects [14.88446525549421]
Large scale text-guided diffusion models have garnered significant attention due to their ability to synthesize diverse images.
We present a technique that harnesses the power of latent diffusion models for editing existing 3D objects.
arXiv Detail & Related papers (2023-03-21T17:36:36Z) - RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and
Generation [68.06991943974195]
We present RenderDiffusion, the first diffusion model for 3D generation and inference, trained using only monocular 2D supervision.
We evaluate RenderDiffusion on FFHQ, AFHQ, ShapeNet and CLEVR datasets, showing competitive performance for generation of 3D scenes and inference of 3D scenes from 2D images.
arXiv Detail & Related papers (2022-11-17T20:17:04Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.