Review of Explainable Graph-Based Recommender Systems
- URL: http://arxiv.org/abs/2408.00166v1
- Date: Wed, 31 Jul 2024 21:30:36 GMT
- Title: Review of Explainable Graph-Based Recommender Systems
- Authors: Thanet Markchom, Huizhi Liang, James Ferryman,
- Abstract summary: This review paper discusses state-of-the-art approaches of explainable graph-based recommender systems.
It categorizes them based on three aspects: learning methods, explaining methods, and explanation types.
- Score: 2.1711205684359247
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Explainability of recommender systems has become essential to ensure users' trust and satisfaction. Various types of explainable recommender systems have been proposed including explainable graph-based recommender systems. This review paper discusses state-of-the-art approaches of these systems and categorizes them based on three aspects: learning methods, explaining methods, and explanation types. It also explores the commonly used datasets, explainability evaluation methods, and future directions of this research area. Compared with the existing review papers, this paper focuses on explainability based on graphs and covers the topics required for developing novel explainable graph-based recommender systems.
Related papers
- Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems.
The survey analyzes the robustness, data bias, and fairness issues in recommender systems.
The study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.
arXiv Detail & Related papers (2023-06-22T05:51:49Z) - Visualization for Recommendation Explainability: A Survey and New Perspectives [0.0]
We systematically review the literature on explanations in recommender systems based on four dimensions.
We derive a set of guidelines that might be constructive for designing explanatory visualizations in recommender systems.
The aim of this review is to help recommendation researchers and practitioners better understand the potential of visually explainable recommendation research.
arXiv Detail & Related papers (2023-05-19T15:42:00Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
This survey is based on more than 100 papers from top-tier conferences like IJCAI, AAAI, TheWebConf, Recsys, UMAP, and IUI.
arXiv Detail & Related papers (2022-02-14T02:58:55Z) - Rating and aspect-based opinion graph embeddings for explainable
recommendations [69.9674326582747]
We propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews.
We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders.
arXiv Detail & Related papers (2021-07-07T14:07:07Z) - Graphing else matters: exploiting aspect opinions and ratings in
explainable graph-based recommendations [66.83527496838937]
We propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews.
We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains.
Our approach has the advantage of providing explanations which leverage aspect-based opinions given by users about recommended items.
arXiv Detail & Related papers (2021-07-07T13:57:28Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.