CDFGNN: a Systematic Design of Cache-based Distributed Full-Batch Graph Neural Network Training with Communication Reduction
- URL: http://arxiv.org/abs/2408.00232v1
- Date: Thu, 1 Aug 2024 01:57:09 GMT
- Title: CDFGNN: a Systematic Design of Cache-based Distributed Full-Batch Graph Neural Network Training with Communication Reduction
- Authors: Shuai Zhang, Zite Jiang, Haihang You,
- Abstract summary: Graph neural network training is mainly categorized into mini-batch and full-batch training methods.
In the distributed cluster, frequent remote accesses of features and gradients lead to huge communication overhead.
We introduce the cached-based distributed full-batch graph neural network training framework (CDFGNN)
Our results indicate that CDFGNN has great potential in accelerating distributed full-batch GNN training tasks.
- Score: 7.048300785744331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural network training is mainly categorized into mini-batch and full-batch training methods. The mini-batch training method samples subgraphs from the original graph in each iteration. This sampling operation introduces extra computation overhead and reduces the training accuracy. Meanwhile, the full-batch training method calculates the features and corresponding gradients of all vertices in each iteration, and therefore has higher convergence accuracy. However, in the distributed cluster, frequent remote accesses of vertex features and gradients lead to huge communication overhead, thus restricting the overall training efficiency. In this paper, we introduce the cached-based distributed full-batch graph neural network training framework (CDFGNN). We propose the adaptive cache mechanism to reduce the remote vertex access by caching the historical features and gradients of neighbor vertices. Besides, we further optimize the communication overhead by quantifying the messages and designing the graph partition algorithm for the hierarchical communication architecture. Experiments show that the adaptive cache mechanism reduces remote vertex accesses by 63.14% on average. Combined with communication quantization and hierarchical GP algorithm, CDFGNN outperforms the state-of-the-art distributed full-batch training frameworks by 30.39% in our experiments. Our results indicate that CDFGNN has great potential in accelerating distributed full-batch GNN training tasks.
Related papers
- MassiveGNN: Efficient Training via Prefetching for Massively Connected Distributed Graphs [11.026326555186333]
This paper develops a parameterized continuous prefetch and eviction scheme on top of the state-of-the-art Amazon DistDGL distributed GNN framework.
It demonstrates about 15-40% improvement in end-to-end training performance on the National Energy Research Scientific Computing Center's (NERSC) Perlmutter supercomputer.
arXiv Detail & Related papers (2024-10-30T05:10:38Z) - Distributed Training of Large Graph Neural Networks with Variable Communication Rates [71.7293735221656]
Training Graph Neural Networks (GNNs) on large graphs presents unique challenges due to the large memory and computing requirements.
Distributed GNN training, where the graph is partitioned across multiple machines, is a common approach to training GNNs on large graphs.
We introduce a variable compression scheme for reducing the communication volume in distributed GNN training without compromising the accuracy of the learned model.
arXiv Detail & Related papers (2024-06-25T14:57:38Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - Adaptive Message Quantization and Parallelization for Distributed
Full-graph GNN Training [6.557328947642343]
Distributed full-graph training of Graph Neural Networks (GNNs) over large graphs is bandwidth-demanding and time-consuming.
This paper proposes an efficient GNN training system, AdaQP, to expedite distributed full-graph training.
arXiv Detail & Related papers (2023-06-02T09:02:09Z) - Scalable Graph Convolutional Network Training on Distributed-Memory
Systems [5.169989177779801]
Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs.
Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges.
We propose a highly parallel training algorithm that scales to large processor counts.
arXiv Detail & Related papers (2022-12-09T17:51:13Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
Mini-batch training of graph neural networks (GNNs) requires a lot of computation and data movement.
We argue in favor of performing mini-batch training with neighborhood sampling in a distributed multi-GPU environment.
We present a sequence of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler.
We also conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not materially compromised.
arXiv Detail & Related papers (2021-10-16T02:41:35Z) - Accurate, Efficient and Scalable Training of Graph Neural Networks [9.569918335816963]
Graph Neural Networks (GNNs) are powerful deep learning models to generate node embeddings on graphs.
It is still challenging to perform training in an efficient and scalable way.
We propose a novel parallel training framework that reduces training workload by orders of magnitude compared with state-of-the-art minibatch methods.
arXiv Detail & Related papers (2020-10-05T22:06:23Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.