OTAD: An Optimal Transport-Induced Robust Model for Agnostic Adversarial Attack
- URL: http://arxiv.org/abs/2408.00329v1
- Date: Thu, 1 Aug 2024 07:04:18 GMT
- Title: OTAD: An Optimal Transport-Induced Robust Model for Agnostic Adversarial Attack
- Authors: Kuo Gai, Sicong Wang, Shihua Zhang,
- Abstract summary: Deep neural networks (DNNs) are vulnerable to small adversarial perturbations of the inputs.
We present a novel two-step Optimal Transport induced Adversarial Defense model.
OTAD can fit the training data accurately while preserving the local Lipschitz continuity.
- Score: 7.824226954174748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are vulnerable to small adversarial perturbations of the inputs, posing a significant challenge to their reliability and robustness. Empirical methods such as adversarial training can defend against particular attacks but remain vulnerable to more powerful attacks. Alternatively, Lipschitz networks provide certified robustness to unseen perturbations but lack sufficient expressive power. To harness the advantages of both approaches, we design a novel two-step Optimal Transport induced Adversarial Defense (OTAD) model that can fit the training data accurately while preserving the local Lipschitz continuity. First, we train a DNN with a regularizer derived from optimal transport theory, yielding a discrete optimal transport map linking data to its features. By leveraging the map's inherent regularity, we interpolate the map by solving the convex integration problem (CIP) to guarantee the local Lipschitz property. OTAD is extensible to diverse architectures of ResNet and Transformer, making it suitable for complex data. For efficient computation, the CIP can be solved through training neural networks. OTAD opens a novel avenue for developing reliable and secure deep learning systems through the regularity of optimal transport maps. Empirical results demonstrate that OTAD can outperform other robust models on diverse datasets.
Related papers
- Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
We explore the concept of Lipschitz continuity to certify the robustness of deep neural networks (DNNs) against adversarial attacks.
We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness.
Our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
arXiv Detail & Related papers (2024-06-28T03:10:36Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness [172.61581010141978]
Certifiable robustness is a desirable property for adopting deep neural networks (DNNs) in safety-critical scenarios.
We propose a novel solution to strategically manipulate neurons, by "grafting" appropriate levels of linearity.
arXiv Detail & Related papers (2022-06-15T22:42:29Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Robust Learning via Ensemble Density Propagation in Deep Neural Networks [6.0122901245834015]
We formulate the problem of density propagation through layers of a deep neural network (DNN) and solve it using an Ensemble Density propagation scheme.
Experiments using MNIST and CIFAR-10 datasets show a significant improvement in the robustness of the trained models to random noise and adversarial attacks.
arXiv Detail & Related papers (2021-11-10T21:26:08Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.