Illustrating Classic Brazilian Books using a Text-To-Image Diffusion Model
- URL: http://arxiv.org/abs/2408.00544v1
- Date: Thu, 1 Aug 2024 13:28:15 GMT
- Title: Illustrating Classic Brazilian Books using a Text-To-Image Diffusion Model
- Authors: Felipe Mahlow, André Felipe Zanella, William Alberto Cruz Castañeda, Regilene Aparecida Sarzi-Ribeiro,
- Abstract summary: Latent Diffusion Models (LDMs) signifies a paradigm shift in the domain of AI capabilities.
This article delves into the feasibility of employing the Stable Diffusion LDM to illustrate literary works.
- Score: 0.4374837991804086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Generative Artificial Intelligence (GenAI) has undergone a profound transformation in addressing intricate tasks involving diverse modalities such as textual, auditory, visual, and pictorial generation. Within this spectrum, text-to-image (TTI) models have emerged as a formidable approach to generating varied and aesthetically appealing compositions, spanning applications from artistic creation to realistic facial synthesis, and demonstrating significant advancements in computer vision, image processing, and multimodal tasks. The advent of Latent Diffusion Models (LDMs) signifies a paradigm shift in the domain of AI capabilities. This article delves into the feasibility of employing the Stable Diffusion LDM to illustrate literary works. For this exploration, seven classic Brazilian books have been selected as case studies. The objective is to ascertain the practicality of this endeavor and to evaluate the potential of Stable Diffusion in producing illustrations that augment and enrich the reader's experience. We will outline the beneficial aspects, such as the capacity to generate distinctive and contextually pertinent images, as well as the drawbacks, including any shortcomings in faithfully capturing the essence of intricate literary depictions. Through this study, we aim to provide a comprehensive assessment of the viability and efficacy of utilizing AI-generated illustrations in literary contexts, elucidating both the prospects and challenges encountered in this pioneering application of technology.
Related papers
- Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
This paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate.
We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references.
Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
arXiv Detail & Related papers (2024-11-22T21:38:51Z) - LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models [60.67899965748755]
We present LLaVA-Read, a multimodal large language model that utilizes dual visual encoders along with a visual text encoder.
Our research suggests visual text understanding remains an open challenge and an efficient visual text encoder is crucial for future successful multimodal systems.
arXiv Detail & Related papers (2024-07-27T05:53:37Z) - ORACLE: Leveraging Mutual Information for Consistent Character Generation with LoRAs in Diffusion Models [3.7599363231894185]
We introduce a novel framework designed to produce consistent character representations from a single text prompt.
Our framework outperforms existing methods in generating characters with consistent visual identities.
arXiv Detail & Related papers (2024-06-04T23:39:08Z) - StrucTexTv3: An Efficient Vision-Language Model for Text-rich Image Perception, Comprehension, and Beyond [68.0107158115377]
We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images.
We enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning.
Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks.
arXiv Detail & Related papers (2024-05-31T16:55:04Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Vision-Language Models in Remote Sensing: Current Progress and Future Trends [25.017685538386548]
Vision-language models enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics.
Vision-language models can go beyond visual recognition of RS images, model semantic relationships, and generate natural language descriptions of the image.
This paper provides a comprehensive review of the research on vision-language models in remote sensing.
arXiv Detail & Related papers (2023-05-09T19:17:07Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z) - A Novel Sampling Scheme for Text- and Image-Conditional Image Synthesis
in Quantized Latent Spaces [0.7340845393655052]
We propose a streamlined approach for text-to-image generation, which encompasses both the training paradigm and the sampling process.
Despite its remarkable simplicity, our method yields aesthetically pleasing images with few sampling iterations.
To demonstrate the efficacy of this approach in achieving outcomes comparable to existing works, we have trained a one-billion parameter text-conditional model.
arXiv Detail & Related papers (2022-11-14T11:52:55Z) - From Show to Tell: A Survey on Image Captioning [48.98681267347662]
Connecting Vision and Language plays an essential role in Generative Intelligence.
Research in image captioning has not reached a conclusive answer yet.
This work aims at providing a comprehensive overview and categorization of image captioning approaches.
arXiv Detail & Related papers (2021-07-14T18:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.