Assessing the Variety of a Concept Space Using an Unbiased Estimate of Rao's Quadratic Index
- URL: http://arxiv.org/abs/2408.00684v1
- Date: Thu, 1 Aug 2024 16:25:54 GMT
- Title: Assessing the Variety of a Concept Space Using an Unbiased Estimate of Rao's Quadratic Index
- Authors: Anubhab Majumder, Ujjwal Pal, Amaresh Chakrabarti,
- Abstract summary: 'Variety' is one of the parameters by which one can quantify the breadth of a concept space explored by the designers.
This article elaborates on and critically examines the existing variety metrics from the engineering design literature.
A new distance-based variety metric is proposed, along with a prescriptive framework to support the assessment process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Past research relates design creativity to 'divergent thinking,' i.e., how well the concept space is explored during the early phase of design. Researchers have argued that generating several concepts would increase the chances of producing better design solutions. 'Variety' is one of the parameters by which one can quantify the breadth of a concept space explored by the designers. It is useful to assess variety at the conceptual design stage because, at this stage, designers have the freedom to explore different solution principles so as to satisfy a design problem with substantially novel concepts. This article elaborates on and critically examines the existing variety metrics from the engineering design literature, discussing their limitations. A new distance-based variety metric is proposed, along with a prescriptive framework to support the assessment process. This framework uses the SAPPhIRE model of causality as a knowledge representation scheme to measure the real-valued distance between two design concepts. The proposed framework is implemented in a software tool called 'VariAnT.' Furthermore, the tool's application is demonstrated through an illustrative example.
Related papers
- Design Spaces and How Software Designers Use Them: a sampler [2.2674718030662713]
"Design spaces" are used to describe the spectrum of available design alternatives.
We show how design spaces can serve designers as lenses to reduce the overall space of possibilities.
arXiv Detail & Related papers (2024-07-26T04:19:28Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Design is a personalized interior designer that allows users to generate and visualize their design goals through natural language communication.
I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another.
The final design is then constructed in 3D by retrieving and integrating assets from an existing object database.
arXiv Detail & Related papers (2024-04-03T16:17:53Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs)
Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity.
Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene.
arXiv Detail & Related papers (2023-10-03T14:57:31Z) - Machine Learning-Based Multi-Objective Design Exploration Of Flexible
Disc Elements [1.5638419778920147]
This paper showcases Artificial Neural Network (ANN) architecture applied to an engineering design problem to explore and identify improved design solutions.
The case problem of this study is the design of flexible disc elements used in disc couplings.
To accomplish this objective, we employ ANN coupled with genetic algorithm in the design exploration step to identify designs that meet the specified criteria.
arXiv Detail & Related papers (2023-04-14T16:48:51Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Discovering Design Concepts for CAD Sketches [13.140310747416983]
We propose a learning based approach that discovers the modular concepts by induction over raw sketches.
We demonstrate the design concept learning on a large scale CAD sketch dataset and show its applications for design intent interpretation and auto-completion.
arXiv Detail & Related papers (2022-10-26T03:53:33Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images.
We first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features.
We then come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words.
arXiv Detail & Related papers (2020-11-23T18:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.