Improving Text Embeddings for Smaller Language Models Using Contrastive Fine-tuning
- URL: http://arxiv.org/abs/2408.00690v2
- Date: Fri, 2 Aug 2024 14:36:05 GMT
- Title: Improving Text Embeddings for Smaller Language Models Using Contrastive Fine-tuning
- Authors: Trapoom Ukarapol, Zhicheng Lee, Amy Xin,
- Abstract summary: We conduct contrastive fine-tuning on the NLI dataset.
MiniCPM shows the most significant improvements of an average 56.33% performance gain.
- Score: 0.9561495813823734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models show remarkable performance in natural language understanding, their resource-intensive nature makes them less accessible. In contrast, smaller language models such as MiniCPM offer more sustainable scalability, but often underperform without specialized optimization. In this paper, we explore the enhancement of smaller language models through the improvement of their text embeddings. We select three language models, MiniCPM, Phi-2, and Gemma, to conduct contrastive fine-tuning on the NLI dataset. Our results demonstrate that this fine-tuning method enhances the quality of text embeddings for all three models across various benchmarks, with MiniCPM showing the most significant improvements of an average 56.33% performance gain. The contrastive fine-tuning code is publicly available at https://github.com/trapoom555/Language-Model-STS-CFT.
Related papers
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Enhancing SLM via ChatGPT and Dataset Augmentation [0.3844771221441211]
We employ knowledge distillation-based techniques and synthetic dataset augmentation to bridge the performance gap between large language models (LLMs) and small language models (SLMs)
Our methods involve two forms of rationale generation--information extraction and informed reasoning--to enrich the ANLI dataset.
Our findings reveal that the incorporation of synthetic rationales significantly improves the model's ability to comprehend natural language, leading to 1.3% and 2.3% higher classification accuracy, respectively, on the ANLI dataset.
arXiv Detail & Related papers (2024-09-19T09:24:36Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
This paper presents ML-SUPERB2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models.
We find performance improvements over the setup of ML-SUPERB, but performance depends on the downstream model design.
Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches.
arXiv Detail & Related papers (2024-06-12T21:01:26Z) - Enhancing Embedding Performance through Large Language Model-based Text Enrichment and Rewriting [0.0]
This paper proposes a novel approach to improve embedding performance by leveraging large language models (LLMs) to enrich and rewrite input text before the embedding process.
The effectiveness of this approach is evaluated on three datasets: Banking77Classification, TwitterSemEval 2015, and Amazon Counter-factual Classification.
arXiv Detail & Related papers (2024-04-18T15:58:56Z) - MAPLE: Multilingual Evaluation of Parameter Efficient Finetuning of Large Language Models [7.321459642283822]
Finetuning can improve the performance of language models without requiring massive resources and compute.
We finetune LLama-2-7B and Mistral-7B models on two synthetic multilingual instruction tuning datasets to determine its effect on model performance.
We find that PEFT of smaller open-source models sometimes bridges the gap between the performance of these models and the larger ones, however, English performance can take a hit.
arXiv Detail & Related papers (2024-01-15T11:06:43Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
We study the interaction between parameter-efficient fine-tuning (PEFT) and cross-lingual tasks in multilingual autoregressive models.
We show that prompt tuning is more effective in enhancing the performance of low-resource languages than fine-tuning.
arXiv Detail & Related papers (2023-11-14T00:43:33Z) - Joint Adaptive Representations for Image-Language Learning [59.40890927221377]
We propose a recipe for image-language learning, which produces effective models, outperforming bigger and more expensive ones, often trained on orders of magnitude larger datasets.
Our key finding is the joint learning of a compact vision and language representation, which adaptively and iteratively fuses the multi-modal features.
With only 40M training examples and with 39 GFLOPs our lightweight model outperforms many times larger state-of-the-art models of 2-20x more FLOPs and using bigger datasets some of which with close to 1B training examples.
arXiv Detail & Related papers (2023-05-31T15:02:02Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
We trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM.
We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods.
We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks.
arXiv Detail & Related papers (2022-04-05T16:11:45Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation [9.501648136713694]
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts.
This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples.
arXiv Detail & Related papers (2021-04-18T11:39:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.