Piculet: Specialized Models-Guided Hallucination Decrease for MultiModal Large Language Models
- URL: http://arxiv.org/abs/2408.01003v1
- Date: Fri, 2 Aug 2024 04:34:37 GMT
- Title: Piculet: Specialized Models-Guided Hallucination Decrease for MultiModal Large Language Models
- Authors: Kohou Wang, Xiang Liu, Zhaoxiang Liu, Kai Wang, Shiguo Lian,
- Abstract summary: Multimodal Large Language Models (MLLMs) have made significant progress in bridging the gap between visual and language modalities.
However, hallucinations in MLLMs, where the generated text does not align with image content, continue to be a major challenge.
We introduce a novel training-free method, named Piculet, for enhancing the input representation of MLLMs.
- Score: 5.5712075816599
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have made significant progress in bridging the gap between visual and language modalities. However, hallucinations in MLLMs, where the generated text does not align with image content, continue to be a major challenge. Existing methods for addressing hallucinations often rely on instruction-tuning, which requires retraining the model with specific data, which increases the cost of utilizing MLLMs further. In this paper, we introduce a novel training-free method, named Piculet, for enhancing the input representation of MLLMs. Piculet leverages multiple specialized models to extract descriptions of visual information from the input image and combine these descriptions with the original image and query as input to the MLLM. We evaluate our method both quantitively and qualitatively, and the results demonstrate that Piculet greatly decreases hallucinations of MLLMs. Our method can be easily extended to different MLLMs while being universal.
Related papers
- PIP-MM: Pre-Integrating Prompt Information into Visual Encoding via Existing MLLM Structures [5.513631883813244]
We propose a framework that textbfPre-textbfIntegratestextbfPrompt information into the visual encoding process using existingmodules of MLLMs.
Our model maintains excellent generation even when half of the visual tokens are reduced.
arXiv Detail & Related papers (2024-10-30T15:05:17Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Paying More Attention to Image: A Training-Free Method for Alleviating Hallucination in LVLMs [14.381188702947949]
Large Vision-Language Models (LVLMs) primarily align image features of vision encoder with Large Language Models (LLMs) to leverage their superior text generation capabilities.
This imbalance in LVLMs may result in the instances of hallucinatory.
We introduce a training-free algorithm to find an equilibrium point between image comprehension and language inference.
arXiv Detail & Related papers (2024-07-31T17:46:57Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Understanding Information Storage and Transfer in Multi-modal Large Language Models [51.20840103605018]
We study how Multi-modal Large Language Models process information in a factual visual question answering task.
Key findings show that these MLLMs rely on self-attention blocks in much earlier layers for information storage.
We introduce MultEdit, a model-editing algorithm that can correct errors and insert new long-tailed information into MLLMs.
arXiv Detail & Related papers (2024-06-06T16:35:36Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Temporal Insight Enhancement: Mitigating Temporal Hallucination in
Multimodal Large Language Models [20.33971942003996]
This study introduces an innovative method to address event-level hallucinations in MLLMs.
We propose a unique mechanism that decomposes on-demand event queries into iconic actions.
We employ models like CLIP and BLIP2 to predict specific timestamps for event occurrences.
arXiv Detail & Related papers (2024-01-18T10:18:48Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - MLLMs-Augmented Visual-Language Representation Learning [70.5293060238008]
We demonstrate that Multi-modal Large Language Models (MLLMs) can enhance visual-language representation learning.
Our approach is simple, utilizing MLLMs to extend multiple diverse captions for each image.
We propose "text shearing" to maintain the quality and availability of extended captions.
arXiv Detail & Related papers (2023-11-30T18:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.