A General Ambiguity Model for Binary Edge Images with Edge Tracing and its Implementation
- URL: http://arxiv.org/abs/2408.01712v1
- Date: Sat, 3 Aug 2024 08:41:07 GMT
- Title: A General Ambiguity Model for Binary Edge Images with Edge Tracing and its Implementation
- Authors: Markus Hennig, Marc Leineke, Bärbel Mertsching,
- Abstract summary: We present a general and intuitive ambiguity model for intersections, junctions and other structures in binary edge images.
The model is combined with edge tracing, where edges are ordered sequences of connected pixels.
By using only a small set of straightforward principles, the results are intuitive to describe.
- Score: 0.9558392439655012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a general and intuitive ambiguity model for intersections, junctions and other structures in binary edge images. The model is combined with edge tracing, where edges are ordered sequences of connected pixels. The objective is to provide a versatile preprocessing method for tasks such as figure-ground segmentation, object recognition, topological analysis, etc. By using only a small set of straightforward principles, the results are intuitive to describe. This helps to implement subsequent processing steps, such as resolving ambiguous edge connections at junctions. By using an augmented edge map, neighboring edges can be directly accessed using quick local search operations. The edge tracing uses recursion, which leads to compact programming code. We explain our algorithm using pseudocode, compare it with related methods, and show how simple modular postprocessing steps can be used to optimize the results. The complete algorithm, including all data structures, requires less than 50 lines of pseudocode. We also provide a C++ implementation of our method.
Related papers
- Boundary Detection Algorithm Inspired by Locally Linear Embedding [8.259071011958254]
We propose a method for detecting boundary points inspired by the widely used locally linear embedding algorithm.
We implement this method using two nearest neighborhood search schemes: the $epsilon$-radius ball scheme and the $K$-nearest neighbor scheme.
arXiv Detail & Related papers (2024-06-26T16:05:57Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - Random Edge Coding: One-Shot Bits-Back Coding of Large Labeled Graphs [24.761152163389735]
We present a one-shot method for compressing large labeled graphs called Random Edge Coding.
Experiments indicate Random Edge Coding can achieve competitive compression performance on real-world network datasets.
arXiv Detail & Related papers (2023-05-16T12:23:18Z) - Iterative Next Boundary Detection for Instance Segmentation of Tree
Rings in Microscopy Images of Shrub Cross Sections [58.720142291102135]
We propose a new iterative method which we term Iterative Next Boundary Detection (INBD)
It intuitively models the natural growth direction, starting from the center of the shrub cross section and detecting the next ring boundary in each step.
In our experiments, INBD shows superior performance to generic instance segmentation methods and is the only one with a built-in notion of chronological order.
arXiv Detail & Related papers (2022-12-06T14:49:41Z) - Edge Tracing using Gaussian Process Regression [0.0]
We introduce a novel edge tracing algorithm using Gaussian process regression.
Our approach has the ability to efficiently trace edges in image sequences.
Various applications to medical imaging and satellite imaging are used to validate the technique.
arXiv Detail & Related papers (2021-11-05T16:43:14Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.