TS-SAM: Fine-Tuning Segment-Anything Model for Downstream Tasks
- URL: http://arxiv.org/abs/2408.01835v1
- Date: Sat, 3 Aug 2024 18:08:51 GMT
- Title: TS-SAM: Fine-Tuning Segment-Anything Model for Downstream Tasks
- Authors: Yang Yu, Chen Xu, Kai Wang,
- Abstract summary: There is still a significant performance gap between fine-tuned SAMs and domain-specific models.
We propose Two-Stream SAM (TS-SAM), which integrates the powerful features from SAM into side network training for comprehensive feature fusion.
Extensive experiments on ten public datasets from three tasks demonstrate that TS-SAM not only significantly outperforms the recently proposed SAM-Adapter and SSOM, but achieves competitive performance with the SOTA domain-specific models.
- Score: 10.75125721857487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapter based fine-tuning has been studied for improving the performance of SAM on downstream tasks. However, there is still a significant performance gap between fine-tuned SAMs and domain-specific models. To reduce the gap, we propose Two-Stream SAM (TS-SAM). On the one hand, inspired by the side network in Parameter-Efficient Fine-Tuning (PEFT), we designed a lightweight Convolutional Side Adapter (CSA), which integrates the powerful features from SAM into side network training for comprehensive feature fusion. On the other hand, in line with the characteristics of segmentation tasks, we designed Multi-scale Refinement Module (MRM) and Feature Fusion Decoder (FFD) to keep both the detailed and semantic features. Extensive experiments on ten public datasets from three tasks demonstrate that TS-SAM not only significantly outperforms the recently proposed SAM-Adapter and SSOM, but achieves competitive performance with the SOTA domain-specific models. Our code is available at: https://github.com/maoyangou147/TS-SAM.
Related papers
- SAMPa: Sharpness-aware Minimization Parallelized [51.668052890249726]
Sharpness-aware (SAM) has been shown to improve the generalization of neural networks.
Each SAM update requires emphsequentially computing two gradients, effectively doubling the per-iteration cost.
We propose a simple modification of SAM, termed SAMPa, which allows us to fully parallelize the two gradient computations.
arXiv Detail & Related papers (2024-10-14T16:21:23Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - Lite-SAM Is Actually What You Need for Segment Everything [4.696541976769272]
Lite-SAM is an efficient end-to-end solution for the SegEvery task.
Lite-SAM is composed of four main components: a streamlined CNN-Transformer hybrid encoder (LiteViT), an automated prompt proposal network (AutoPPN)
arXiv Detail & Related papers (2024-07-12T03:28:46Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - ClassWise-SAM-Adapter: Parameter Efficient Fine-tuning Adapts Segment
Anything to SAR Domain for Semantic Segmentation [6.229326337093342]
Segment Anything Model (SAM) excels in various segmentation scenarios relying on semantic information and generalization ability.
The ClassWiseSAM-Adapter (CWSAM) is designed to adapt the high-performing SAM for landcover classification on space-borne Synthetic Aperture Radar (SAR) images.
CWSAM showcases enhanced performance with fewer computing resources.
arXiv Detail & Related papers (2024-01-04T15:54:45Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
We propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance.
We first propose a full-stage knowledge distillation method with hard prompt sampling and hard mask weighting strategy to distill a lightweight student model.
We also adapt the post-training quantization to the promptable segmentation task and further reduce the computational cost.
arXiv Detail & Related papers (2023-12-21T12:26:11Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - SAM-CLIP: Merging Vision Foundation Models towards Semantic and Spatial Understanding [40.40630116715132]
The landscape of publicly available vision foundation models (VFMs) is expanding rapidly.
We introduce a simple recipe to efficiently merge VFMs into a unified model that absorbs their expertise.
By applying our method to SAM and CLIP, we obtain SAM-CLIP: a unified model that combines the capabilities of SAM and CLIP into a single vision transformer.
arXiv Detail & Related papers (2023-10-23T19:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.