Efficient Solutions For An Intriguing Failure of LLMs: Long Context Window Does Not Mean LLMs Can Analyze Long Sequences Flawlessly
- URL: http://arxiv.org/abs/2408.01866v1
- Date: Sat, 3 Aug 2024 21:31:34 GMT
- Title: Efficient Solutions For An Intriguing Failure of LLMs: Long Context Window Does Not Mean LLMs Can Analyze Long Sequences Flawlessly
- Authors: Peyman Hosseini, Ignacio Castro, Iacopo Ghinassi, Matthew Purver,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable capabilities in comprehending and analyzing lengthy sequential inputs.
This paper uncovers a surprising limitation: LLMs fall short when handling long input sequences.
We propose and evaluate ad-hoc solutions that substantially enhance LLMs' performance on long input sequences by up to 50%.
- Score: 6.685692482347038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in comprehending and analyzing lengthy sequential inputs, owing to their extensive context windows that allow processing millions of tokens in a single forward pass. However, this paper uncovers a surprising limitation: LLMs fall short when handling long input sequences. We investigate this issue using three datasets and two tasks (sentiment analysis and news categorization) across various LLMs, including Claude 3, Gemini Pro, GPT 3.5 Turbo, Llama 3 Instruct, and Mistral Instruct models. To address this limitation, we propose and evaluate ad-hoc solutions that substantially enhance LLMs' performance on long input sequences by up to 50%, while reducing API cost and latency by up to 93% and 50%, respectively.
Related papers
- Control Large Language Models via Divide and Conquer [94.48784966256463]
This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG)
We evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications.
arXiv Detail & Related papers (2024-10-06T21:20:06Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
Large Language Models (LLMs) tend to produce inaccurate responses to specific queries.
We construct an adversarial dataset, named as $textbfADT (Adrial dataset for Tokenizer)$ to challenge LLMs' tokenization.
Our empirical results reveal that our ADT is highly effective on challenging the tokenization of leading LLMs, including GPT-4o, Llama-3, Qwen2.5-max and so on.
arXiv Detail & Related papers (2024-05-27T11:39:59Z) - SirLLM: Streaming Infinite Retentive LLM [74.40196814292426]
Large Language Models (LLMs) process inputs of any length and maintain a degree of memory.
Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs.
We introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues.
arXiv Detail & Related papers (2024-05-21T06:37:03Z) - An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs [54.91212829143966]
This study explores LLaMA3's capabilities when quantized to low bit-width.
We evaluate 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets.
Our experimental results indicate that LLaMA3 still suffers non-negligent degradation in linguistic and visual contexts.
arXiv Detail & Related papers (2024-04-22T10:03:03Z) - Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
Large language models (LLMs) perform surprisingly well and outperform human experts on many tasks.
This paper integrates and optimized a pipeline for selecting reasoning paths from KG based on LLM.
We also propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank.
arXiv Detail & Related papers (2024-04-16T08:28:16Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
In this paper, we introduce a training-free memory-based method, InfLLM.
InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention.
Even when the sequence length is scaled to $1,024$K, InfLLM still effectively captures long-distance dependencies.
arXiv Detail & Related papers (2024-02-07T06:50:42Z) - LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models [83.98062659664785]
Large language models (LLMs) typically train on short text segments (e.g., 4K tokens) due to the quadratic complexity of their Transformer architectures.
This work identifies three major factors contributing to this length generalization failure.
We propose LM-Infinite, a simple and effective method for enhancing LLMs' capabilities of handling long contexts.
arXiv Detail & Related papers (2023-08-30T16:47:51Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.